Abstract

Nanostructured amorphous Al oxide (a-Al2O3) thin films doped with Tm3+ were synthesized by alternate pulsed laser deposition. The Tm3+ ions have been deposited in layers with in-depth separation ranging from 0.75 to 6nm. The films show two broad emission bands originated from the Tm3+H43F43 and F43H63 transitions. Their intensity increases at a similar rate and the lifetimes are not modified as the layer separation decreases down to 1.5nm, suggesting that there is no concentration quenching. At the critical value of 1.5nm the onset of Tm3+Tm3+ energy transfer is evidenced by a sharp decrease of the emission intensity and lifetime. Below this critical value, the rate at which the intensity increases for the F43H63 transition is much higher than that for the H43F43 transition, evidencing quenching of the H43F43 transition through a cross-relaxation mechanism. The control of the Tm3+ ions in the nanometer scale allows evidencing the onset of energy transfer processes among ions and offers a route to optimize compact photonic gain integrated devices.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. H. Ennen, J. Schneider, G. Pomrenke, and A. Axmann, Appl. Phys. Lett. 43, 943 (1983).
    [CrossRef]
  2. A. Polman, J. Appl. Phys. 82, 1 (1997).
    [CrossRef]
  3. W. J. Miniscalco, J. Lightwave Technol. 9, 234 (1991).
    [CrossRef]
  4. T. Tsuboi, J. Electrochem. Soc. 147, 1997 (2000).
    [CrossRef]
  5. E. R. Taylor, L. N. Ng, N. P. Sessions, and H. Buerger, J. Appl. Phys. 92, 112 (2002).
    [CrossRef]
  6. S. Y. Seo, J. H. Shin, B. S. Bae, N. Park, J. J. Penninkhof, and A. Polman, Appl. Phys. Lett. 82, 3445 (2003).
    [CrossRef]
  7. R. Balda, J. Fernandez, M. A. Arriandiaga, L. M. Lacha, and J. M. Fernandez-Navarro, Opt. Mater. 28, 1253 (2006).
    [CrossRef]
  8. B. G. Aitken, M. J. Dejneka, and M. L. Powley, J. Non-Cryst. Solids 349, 115 (2004).
    [CrossRef]
  9. T. Komukai, T. Yamamoto, T. Sugawa, and Y. Miyajima, IEEE J. Quantum Electron. 31, 1880 (1995).
    [CrossRef]
  10. M. Naftaly, S. Shen, and A. Jha, Appl. Opt. 39, 4979 (2000).
    [CrossRef]
  11. Y. S. Han, J. Heo, and Y. B. Shin, J. Non-Cryst. Solids 316, 302 (2003).
    [CrossRef]
  12. A. Sennaroglu, A. Kurt, and G. Ozen, J. Phys.: Condens. Matter 16, 2471 (2004).
    [CrossRef]
  13. S. L. Oliveira, S. M. Lima, T. Catunda, L. A. O. Nunes, J. H. Rohiling, A. C. Bento, and M. L. Baeso, Appl. Phys. Lett. 84, 359 (2004).
    [CrossRef]
  14. G. N. van den Hoven, E. Snoeks, A. Polman, J. W. M. van Uffelen, Y. S. Oei, and M. K. Smit, Appl. Phys. Lett. 62, 3065 (1993).
    [CrossRef]
  15. S. K. Lazarouk, A. V. Mudryi, and V. E. Borisenko, Appl. Phys. Lett. 73, 2272 (1998).
    [CrossRef]
  16. M. B. Lee, J. H. Lee, B. G. Frederick, and N. V. Richardson, Surf. Sci. 448, L207 (2000).
    [CrossRef]
  17. R. Serna, M. J. de Castro, J. A. Chaos, A. Suarez-Garcia, C. N. Afonso, M. Fernandez, and I. Vickridge, J. Appl. Phys. 90, 5120 (2001).
    [CrossRef]
  18. Z. Xiao, R. Serna, C. N. Afonso, and I. Vickridge, Appl. Phys. Lett. 87, 111103 (2005).
    [CrossRef]
  19. H. Kalayicioglu, A. Sennaroglu, A. Kurt, and G. Ozen, J. Phys.: Condens. Matter 19, 036208 (2007).
    [CrossRef]
  20. F. Auzel, G. Baldachini, L. Laversene, and G. Boulon, Opt. Mater. 24, 1003 (2003).
    [CrossRef]

2007 (1)

H. Kalayicioglu, A. Sennaroglu, A. Kurt, and G. Ozen, J. Phys.: Condens. Matter 19, 036208 (2007).
[CrossRef]

2006 (1)

R. Balda, J. Fernandez, M. A. Arriandiaga, L. M. Lacha, and J. M. Fernandez-Navarro, Opt. Mater. 28, 1253 (2006).
[CrossRef]

2005 (1)

Z. Xiao, R. Serna, C. N. Afonso, and I. Vickridge, Appl. Phys. Lett. 87, 111103 (2005).
[CrossRef]

2004 (3)

A. Sennaroglu, A. Kurt, and G. Ozen, J. Phys.: Condens. Matter 16, 2471 (2004).
[CrossRef]

S. L. Oliveira, S. M. Lima, T. Catunda, L. A. O. Nunes, J. H. Rohiling, A. C. Bento, and M. L. Baeso, Appl. Phys. Lett. 84, 359 (2004).
[CrossRef]

B. G. Aitken, M. J. Dejneka, and M. L. Powley, J. Non-Cryst. Solids 349, 115 (2004).
[CrossRef]

2003 (3)

S. Y. Seo, J. H. Shin, B. S. Bae, N. Park, J. J. Penninkhof, and A. Polman, Appl. Phys. Lett. 82, 3445 (2003).
[CrossRef]

Y. S. Han, J. Heo, and Y. B. Shin, J. Non-Cryst. Solids 316, 302 (2003).
[CrossRef]

F. Auzel, G. Baldachini, L. Laversene, and G. Boulon, Opt. Mater. 24, 1003 (2003).
[CrossRef]

2002 (1)

E. R. Taylor, L. N. Ng, N. P. Sessions, and H. Buerger, J. Appl. Phys. 92, 112 (2002).
[CrossRef]

2001 (1)

R. Serna, M. J. de Castro, J. A. Chaos, A. Suarez-Garcia, C. N. Afonso, M. Fernandez, and I. Vickridge, J. Appl. Phys. 90, 5120 (2001).
[CrossRef]

2000 (3)

M. B. Lee, J. H. Lee, B. G. Frederick, and N. V. Richardson, Surf. Sci. 448, L207 (2000).
[CrossRef]

M. Naftaly, S. Shen, and A. Jha, Appl. Opt. 39, 4979 (2000).
[CrossRef]

T. Tsuboi, J. Electrochem. Soc. 147, 1997 (2000).
[CrossRef]

1998 (1)

S. K. Lazarouk, A. V. Mudryi, and V. E. Borisenko, Appl. Phys. Lett. 73, 2272 (1998).
[CrossRef]

1997 (1)

A. Polman, J. Appl. Phys. 82, 1 (1997).
[CrossRef]

1995 (1)

T. Komukai, T. Yamamoto, T. Sugawa, and Y. Miyajima, IEEE J. Quantum Electron. 31, 1880 (1995).
[CrossRef]

1993 (1)

G. N. van den Hoven, E. Snoeks, A. Polman, J. W. M. van Uffelen, Y. S. Oei, and M. K. Smit, Appl. Phys. Lett. 62, 3065 (1993).
[CrossRef]

1991 (1)

W. J. Miniscalco, J. Lightwave Technol. 9, 234 (1991).
[CrossRef]

1983 (1)

H. Ennen, J. Schneider, G. Pomrenke, and A. Axmann, Appl. Phys. Lett. 43, 943 (1983).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (6)

Z. Xiao, R. Serna, C. N. Afonso, and I. Vickridge, Appl. Phys. Lett. 87, 111103 (2005).
[CrossRef]

S. L. Oliveira, S. M. Lima, T. Catunda, L. A. O. Nunes, J. H. Rohiling, A. C. Bento, and M. L. Baeso, Appl. Phys. Lett. 84, 359 (2004).
[CrossRef]

G. N. van den Hoven, E. Snoeks, A. Polman, J. W. M. van Uffelen, Y. S. Oei, and M. K. Smit, Appl. Phys. Lett. 62, 3065 (1993).
[CrossRef]

S. K. Lazarouk, A. V. Mudryi, and V. E. Borisenko, Appl. Phys. Lett. 73, 2272 (1998).
[CrossRef]

H. Ennen, J. Schneider, G. Pomrenke, and A. Axmann, Appl. Phys. Lett. 43, 943 (1983).
[CrossRef]

S. Y. Seo, J. H. Shin, B. S. Bae, N. Park, J. J. Penninkhof, and A. Polman, Appl. Phys. Lett. 82, 3445 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. Komukai, T. Yamamoto, T. Sugawa, and Y. Miyajima, IEEE J. Quantum Electron. 31, 1880 (1995).
[CrossRef]

J. Appl. Phys. (3)

A. Polman, J. Appl. Phys. 82, 1 (1997).
[CrossRef]

E. R. Taylor, L. N. Ng, N. P. Sessions, and H. Buerger, J. Appl. Phys. 92, 112 (2002).
[CrossRef]

R. Serna, M. J. de Castro, J. A. Chaos, A. Suarez-Garcia, C. N. Afonso, M. Fernandez, and I. Vickridge, J. Appl. Phys. 90, 5120 (2001).
[CrossRef]

J. Electrochem. Soc. (1)

T. Tsuboi, J. Electrochem. Soc. 147, 1997 (2000).
[CrossRef]

J. Lightwave Technol. (1)

W. J. Miniscalco, J. Lightwave Technol. 9, 234 (1991).
[CrossRef]

J. Non-Cryst. Solids (2)

B. G. Aitken, M. J. Dejneka, and M. L. Powley, J. Non-Cryst. Solids 349, 115 (2004).
[CrossRef]

Y. S. Han, J. Heo, and Y. B. Shin, J. Non-Cryst. Solids 316, 302 (2003).
[CrossRef]

J. Phys.: Condens. Matter (2)

A. Sennaroglu, A. Kurt, and G. Ozen, J. Phys.: Condens. Matter 16, 2471 (2004).
[CrossRef]

H. Kalayicioglu, A. Sennaroglu, A. Kurt, and G. Ozen, J. Phys.: Condens. Matter 19, 036208 (2007).
[CrossRef]

Opt. Mater. (2)

F. Auzel, G. Baldachini, L. Laversene, and G. Boulon, Opt. Mater. 24, 1003 (2003).
[CrossRef]

R. Balda, J. Fernandez, M. A. Arriandiaga, L. M. Lacha, and J. M. Fernandez-Navarro, Opt. Mater. 28, 1253 (2006).
[CrossRef]

Surf. Sci. (1)

M. B. Lee, J. H. Lee, B. G. Frederick, and N. V. Richardson, Surf. Sci. 448, L207 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

PL spectra of Tm 3 + : Al 2 O 3 films for different Tm 3 + Tm 3 + layer separations (s) in nanometers: 0.75, 1.5, 2, and 6. The inset (a) shows schematically the energy-level diagram of Tm 3 + and the (b) process of cross relaxation.

Fig. 2
Fig. 2

PL intensity at 1480 nm ( ) and 1640 nm ( ) of Tm 3 + : Al 2 O 3 films as a function of [ Tm 3 + ] (bottom axis) and as a function of Tm 3 + Tm 3 + in-depth separation (top axis). The dashed lines are linear fits of the experimental data.

Metrics