Abstract

We report a novel interferometry-based polarization coherent anti-Stokes Raman scattering (IP-CARS) implementation for effectively suppressing the nonresonant background while significantly amplifying the resonant signal for vibrational imaging. By modulating the phase difference between the two interference CARS signals generated from the same sample and measuring the peak-to-peak intensity of the periodically modulated interference CARS signal, the IP-CARS technique yields a sixfold improvement in the signal-to-background ratio compared with conventional CARS while providing an approximately 20-fold amplification of the resonant CARS signal compared with conventional polarization CARS. We demonstrate this method by imaging 4.69μm polystyrene beads and unstained human epithelial cells immersed in water.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. Zumbushch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
    [CrossRef]
  2. H. Wang, T. B. Huff, Y. Fu, and J. X. Cheng, Opt. Lett. 32, 2212 (2007).
    [CrossRef] [PubMed]
  3. R. J. H. Clark and R. E. Hester, Advances in Non-linear Spectroscopy (Wiley, 1988).
  4. A. Volkmer, J. X. Cheng, and X. S. Xie, Phys. Rev. Lett. 87, 023901 (2001).
    [CrossRef]
  5. J. X. Cheng, L. D. Book, and X. S. Xie, Opt. Lett. 26, 1341 (2001).
    [CrossRef]
  6. A. Volkmer, L. D. Book, and X. S. Xie, Appl. Phys. Lett. 80, 1505 (2002).
    [CrossRef]
  7. D. L. Marks and S. A. Boppart, Phys. Rev. Lett. 92, 123905 (2004).
    [CrossRef] [PubMed]
  8. E. O. Potma, C. L. Evans, and X. S. Xie, Opt. Lett. 31, 241 (2006).
    [CrossRef] [PubMed]
  9. G. J. Cheng, F. Shan, A. Freyer, and T. Guo, Appl. Opt. 41, 5148 (2002).
    [CrossRef] [PubMed]
  10. J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. 105, 1277 (2001).

2007 (1)

2006 (1)

2004 (1)

D. L. Marks and S. A. Boppart, Phys. Rev. Lett. 92, 123905 (2004).
[CrossRef] [PubMed]

2002 (2)

G. J. Cheng, F. Shan, A. Freyer, and T. Guo, Appl. Opt. 41, 5148 (2002).
[CrossRef] [PubMed]

A. Volkmer, L. D. Book, and X. S. Xie, Appl. Phys. Lett. 80, 1505 (2002).
[CrossRef]

2001 (3)

A. Volkmer, J. X. Cheng, and X. S. Xie, Phys. Rev. Lett. 87, 023901 (2001).
[CrossRef]

J. X. Cheng, L. D. Book, and X. S. Xie, Opt. Lett. 26, 1341 (2001).
[CrossRef]

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. 105, 1277 (2001).

1999 (1)

A. Zumbushch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. Volkmer, L. D. Book, and X. S. Xie, Appl. Phys. Lett. 80, 1505 (2002).
[CrossRef]

J. Phys. Chem. (1)

J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, J. Phys. Chem. 105, 1277 (2001).

Opt. Lett. (3)

Phys. Rev. Lett. (3)

A. Zumbushch, G. R. Holtom, and X. S. Xie, Phys. Rev. Lett. 82, 4142 (1999).
[CrossRef]

A. Volkmer, J. X. Cheng, and X. S. Xie, Phys. Rev. Lett. 87, 023901 (2001).
[CrossRef]

D. L. Marks and S. A. Boppart, Phys. Rev. Lett. 92, 123905 (2004).
[CrossRef] [PubMed]

Other (1)

R. J. H. Clark and R. E. Hester, Advances in Non-linear Spectroscopy (Wiley, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Polarization vectors of the pump and the two Stokes fields, the generated resonant and nonresonant CARS signals, and the orientation of the analyzer (polarizer) for IP-CARS microscopy.

Fig. 2
Fig. 2

Schematic of IP-CARS microscope. The pump beam and the two perpendicularly polarized Stokes beams are collinearly focused onto the sample for generating two CARS signals simultaneously. ω p , ω S 1 , and ω S 2 represent the pump field and the first and second Stokes fields, respectively. The symbols ‖ and ⊥ indicate parallel and perpendicular polarizations, respectively. BS, beam splitter; M, mirror; HW, half-wave plate; QW, quarter-wave plate; PBS, polarizing beam splitter; DM, dichroic mirror; L, lens; MO, microscope objective; A, polarization analyzer; F, filter set (combination of a short-pass filter cut off at 700 nm and a bandpass filter centered at 660 nm with FWHM 80 nm ); APD, avalanche photodiode.

Fig. 3
Fig. 3

Comparison of CARS images, at a vibrational frequency of 3054 cm 1 , of 4.69 μ m polystyrene beads immersed in water: (a) conventional CARS, (b) conventional P-CARS, and (c) IP-CARS. (d)–(f) Corresponding intensity profiles across the lines indicated in images (a)–(c). The average powers of the pump beam ( 835 nm ) and Stokes beam ( 1121 nm ) on the sample are 2 and 0.5 mW , respectively.

Fig. 4
Fig. 4

CARS images (aliphatic CH stretching vibration at 2870 cm 1 ) of an unstained human epithelial cell in an aqueous environment: (a) conventional CARS, (b) P-CARS, and (c) IP-CARS. (d)–(f) Corresponding intensity profiles across the lines indicated in the images (a)–(c). The average powers of the pump beam ( 835 nm ) and Stokes beam ( 1098 nm ) on the cell are 1.6 and 0.4 mW , respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P 1 = 3 χ 1111 R E p 2 E S 1 * ( cos ϕ 1 sin θ 1 ρ R sin ϕ 1 cos θ 1 ) .
P 2 = 3 E p 2 E S 2 * χ 1111 R ( sin ϕ 1 sin θ 1 + ρ R cos ϕ 1 cos θ 1 ) + 3 E p 2 E S 2 * χ 1111 N R ( sin ϕ 1 sin θ 1 + ρ N R cos ϕ 1 cos θ 1 ) .
P D e t 2 = P 1 2 + P 2 2 + 2 P 1 P 2 cos φ ,

Metrics