Abstract

We describe efficient continuous-wave (cw) and cw mode-locked operations of a Cr3+:LiCAF laser, pumped by inexpensive single spatial mode laser diodes. Up to 280mW of cw output power was obtained with 570mW of absorbed pump power, with a corresponding slope efficiency of 54%. Continuous tuning between 765 and 865nm was demonstrated using a fused silica prism. A semiconductor saturable absorber mirror was used to initiate and sustain stable, self-starting, mode-locked operation. In cw mode locking, the laser produced 72fs (FWHM) duration pulses, and 1.4nJ pulse energy, at an average output power of 178mW. Electrical to optical conversion efficiencies of 7.8% in mode-locked operation and 12.2% in cw operation were demonstrated.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, IEEE J. Quantum Electron. 24, 2243 (1988).
    [CrossRef]
  2. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, J. Appl. Phys. 66, 1051 (1989).
    [CrossRef]
  3. D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, Appl. Phys. B 65, 235 (1997).
    [CrossRef]
  4. U. Demirbas, A. Sennaroglu, A. Benedick, A. Siddiqui, F. X. Kärtner, and J. G. Fujimoto, Opt. Lett. 32, 3309 (2007).
    [CrossRef] [PubMed]
  5. P. Wagenblast, R. Ell, U. Morgner, F. Grawert, and F. X. Kärtner, Opt. Lett. 28, 1713 (2003).
    [CrossRef] [PubMed]
  6. G. J. Valentine, J. M. Hopkins, P. LozaAlvarez, G. T. Kennedy, W. Sibbett, D. Burns, and A. Valster, Opt. Lett. 22, 1639 (1997).
    [CrossRef]
  7. J. M. Hopkins, G. J. Valentine, W. Sibbett, J. A. der Au, F. Morier-Genoud, U. Keller, and A. Valster, Opt. Commun. 154, 54 (1998).
    [CrossRef]
  8. B. Agate, B. Stormont, A. J. Kemp, C. T. A. Brown, U. Keller, and W. Sibbett, Opt. Commun. 205, 207 (2002).
    [CrossRef]
  9. J. M. Hopkins, G. J. Valentine, B. Agate, A. J. Kemp, U. Keller, and W. Sibbett, IEEE J. Quantum Electron. 38, 360 (2002).
    [CrossRef]
  10. R. P. Prasankumar, Y. Hirakawa, A. M. Kowalevicz, Jr., F. X. Kärtner, J. G. Fujitimo, and W. H. Knox, Opt. Express 11, 1265 (2003).
    [CrossRef] [PubMed]
  11. A. Sennaroglu and J. G. Fujimoto, Opt. Express 11, 1106 (2003).
    [CrossRef] [PubMed]
  12. D. Klimm, G. Lacayo, and P. Reiche, J. Cryst. Growth 210, 683 (2000).
    [CrossRef]
  13. U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. derAu, IEEE J. Sel. Top. Quantum Electron. 2, 435 (1996).
    [CrossRef]
  14. S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, IEEE J. Sel. Top. Quantum Electron. 2, 454 (1996).
    [CrossRef]
  15. A. Isemann and C. Fallnich, Opt. Express 11, 259 (2003).
    [CrossRef] [PubMed]

2007

2003

2002

B. Agate, B. Stormont, A. J. Kemp, C. T. A. Brown, U. Keller, and W. Sibbett, Opt. Commun. 205, 207 (2002).
[CrossRef]

J. M. Hopkins, G. J. Valentine, B. Agate, A. J. Kemp, U. Keller, and W. Sibbett, IEEE J. Quantum Electron. 38, 360 (2002).
[CrossRef]

2000

D. Klimm, G. Lacayo, and P. Reiche, J. Cryst. Growth 210, 683 (2000).
[CrossRef]

1998

J. M. Hopkins, G. J. Valentine, W. Sibbett, J. A. der Au, F. Morier-Genoud, U. Keller, and A. Valster, Opt. Commun. 154, 54 (1998).
[CrossRef]

1997

D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, Appl. Phys. B 65, 235 (1997).
[CrossRef]

G. J. Valentine, J. M. Hopkins, P. LozaAlvarez, G. T. Kennedy, W. Sibbett, D. Burns, and A. Valster, Opt. Lett. 22, 1639 (1997).
[CrossRef]

1996

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. derAu, IEEE J. Sel. Top. Quantum Electron. 2, 435 (1996).
[CrossRef]

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, IEEE J. Sel. Top. Quantum Electron. 2, 454 (1996).
[CrossRef]

1989

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, J. Appl. Phys. 66, 1051 (1989).
[CrossRef]

1988

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, IEEE J. Quantum Electron. 24, 2243 (1988).
[CrossRef]

Appl. Phys. B

D. Kopf, K. J. Weingarten, G. Zhang, M. Moser, M. A. Emanuel, R. J. Beach, J. A. Skidmore, and U. Keller, Appl. Phys. B 65, 235 (1997).
[CrossRef]

IEEE J. Quantum Electron.

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, and W. F. Krupke, IEEE J. Quantum Electron. 24, 2243 (1988).
[CrossRef]

J. M. Hopkins, G. J. Valentine, B. Agate, A. J. Kemp, U. Keller, and W. Sibbett, IEEE J. Quantum Electron. 38, 360 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

U. Keller, K. J. Weingarten, F. X. Kärtner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. A. derAu, IEEE J. Sel. Top. Quantum Electron. 2, 435 (1996).
[CrossRef]

S. Tsuda, W. H. Knox, S. T. Cundiff, W. Y. Jan, and J. E. Cunningham, IEEE J. Sel. Top. Quantum Electron. 2, 454 (1996).
[CrossRef]

J. Appl. Phys.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, and H. W. Newkirk, J. Appl. Phys. 66, 1051 (1989).
[CrossRef]

J. Cryst. Growth

D. Klimm, G. Lacayo, and P. Reiche, J. Cryst. Growth 210, 683 (2000).
[CrossRef]

Opt. Commun.

J. M. Hopkins, G. J. Valentine, W. Sibbett, J. A. der Au, F. Morier-Genoud, U. Keller, and A. Valster, Opt. Commun. 154, 54 (1998).
[CrossRef]

B. Agate, B. Stormont, A. J. Kemp, C. T. A. Brown, U. Keller, and W. Sibbett, Opt. Commun. 205, 207 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the single-mode diode-pumped Cr 3 + : Li CAF laser. Dashed line shows the cw cavity.

Fig. 2
Fig. 2

cw efficiency curves for the single-mode diode-pumped Cr 3 + : Li CAF laser taken with the 0.5%, 1.95%, and 6% OCs.

Fig. 3
Fig. 3

Efficiency curve for the Cr 3 + : Li CAF laser in different operating regimes with the 1.95% OC.

Fig. 4
Fig. 4

Measured spectra and autocorrelation trace for the 72 fs , 1.4 nJ pulses with 178 mW of average output power taken using the 1.9% OC.

Metrics