Abstract

Feasible sorters need to function rapidly and permit the input and delivery of particles continuously. Here, we describe a scheme that incorporates (i) restricted spatial input location and (ii) orthogonal sort and movement direction features. Sorting is achieved using an asymmetric potential that is cycled on and off, whereas movement is accomplished using photophoresis. Simulations with 0.2 and 0.5μm diameter spherical particles indicate that sorting can commence quickly from a continuous stream. Procedures to optimize the sorting scheme are also described.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. M. P. MacDonald, G. C. Spalding, and K. Dholakia, Nature 426, 421 (2003).
    [CrossRef] [PubMed]
  2. T. Imasaka, Y. Kawabata, T. Kaneta, and I. Ishidzu, Anal. Chem. 67, 1763 (1995).
    [CrossRef]
  3. S. Koyanaka and S. Endoh, Adv. Powder Technol. 15, 337 (2004).
    [CrossRef]
  4. M. O. Magnasco, Phys. Rev. Lett. 71, 1477 (1993).
    [CrossRef] [PubMed]
  5. C. R. Doering, W. Horsthemke, and J. Riordan, Phys. Rev. Lett. 72, 2984 (1994).
    [CrossRef] [PubMed]
  6. C. R. Doering, Physica A 254, 1 (1998).
    [CrossRef]
  7. L. Gorre-Talini, S. Jeanjean, and P. Silberzan, Phys. Rev. E 56, 2025 (1997).
    [CrossRef]
  8. A. A. Dubkov and B. Spagnolo, Phys. Rev. E 72, 041104 (2005).
    [CrossRef]
  9. A. Haljas, R. Mankin, A. Sauga, and E. Reiter, Phys. Rev. E 70, 041107 (2004).
    [CrossRef]
  10. J. Rousselet, L. Salome, A. Ajdari, and J. Prost, Nature 370, 446 (1994).
    [CrossRef] [PubMed]
  11. A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).
    [CrossRef]
  12. M. Tamagawa, H. Monjushiro, and H. Watarai, Colloids Surf., A 220, 279 (2003).
    [CrossRef]
  13. D. Erickson and D. Li, Anal. Chim. Acta 507, 11 (2004).
    [CrossRef]
  14. A. Neild, S. Oberti, F. Beyeler, J. Dual, and B. J. Nelson, J. Micromech. Microeng. 16, 1562 (2006).
    [CrossRef]
  15. A. Libal, C. Reichhardt, B. Janko, and C. J. Olson Reichhardt, Phys. Rev. Lett. 96, 188301 (2006).
    [CrossRef] [PubMed]
  16. R. L. Smith, G. C. Spalding, K. Dholakia, and M. P. MacDonald, J. Opt. A, Pure Appl. Opt. 9, S134 (2007).
    [CrossRef]
  17. G. Milne, D. Rhodes, M. P. MacDonald, and K. Dholakia, Opt. Lett. 32, 1144 (2007).
    [CrossRef] [PubMed]
  18. K. Dholakia, M. P. MacDonald, P. Zemanek, and T. Cizmar, Methods Cell Biol. 82, 467 (2007).
    [CrossRef] [PubMed]

2007

R. L. Smith, G. C. Spalding, K. Dholakia, and M. P. MacDonald, J. Opt. A, Pure Appl. Opt. 9, S134 (2007).
[CrossRef]

G. Milne, D. Rhodes, M. P. MacDonald, and K. Dholakia, Opt. Lett. 32, 1144 (2007).
[CrossRef] [PubMed]

K. Dholakia, M. P. MacDonald, P. Zemanek, and T. Cizmar, Methods Cell Biol. 82, 467 (2007).
[CrossRef] [PubMed]

2006

A. Neild, S. Oberti, F. Beyeler, J. Dual, and B. J. Nelson, J. Micromech. Microeng. 16, 1562 (2006).
[CrossRef]

A. Libal, C. Reichhardt, B. Janko, and C. J. Olson Reichhardt, Phys. Rev. Lett. 96, 188301 (2006).
[CrossRef] [PubMed]

2005

A. A. Dubkov and B. Spagnolo, Phys. Rev. E 72, 041104 (2005).
[CrossRef]

2004

A. Haljas, R. Mankin, A. Sauga, and E. Reiter, Phys. Rev. E 70, 041107 (2004).
[CrossRef]

S. Koyanaka and S. Endoh, Adv. Powder Technol. 15, 337 (2004).
[CrossRef]

D. Erickson and D. Li, Anal. Chim. Acta 507, 11 (2004).
[CrossRef]

2003

M. P. MacDonald, G. C. Spalding, and K. Dholakia, Nature 426, 421 (2003).
[CrossRef] [PubMed]

M. Tamagawa, H. Monjushiro, and H. Watarai, Colloids Surf., A 220, 279 (2003).
[CrossRef]

1998

C. R. Doering, Physica A 254, 1 (1998).
[CrossRef]

1997

L. Gorre-Talini, S. Jeanjean, and P. Silberzan, Phys. Rev. E 56, 2025 (1997).
[CrossRef]

1995

T. Imasaka, Y. Kawabata, T. Kaneta, and I. Ishidzu, Anal. Chem. 67, 1763 (1995).
[CrossRef]

1994

J. Rousselet, L. Salome, A. Ajdari, and J. Prost, Nature 370, 446 (1994).
[CrossRef] [PubMed]

C. R. Doering, W. Horsthemke, and J. Riordan, Phys. Rev. Lett. 72, 2984 (1994).
[CrossRef] [PubMed]

1993

M. O. Magnasco, Phys. Rev. Lett. 71, 1477 (1993).
[CrossRef] [PubMed]

1970

A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).
[CrossRef]

Adv. Powder Technol.

S. Koyanaka and S. Endoh, Adv. Powder Technol. 15, 337 (2004).
[CrossRef]

Anal. Chem.

T. Imasaka, Y. Kawabata, T. Kaneta, and I. Ishidzu, Anal. Chem. 67, 1763 (1995).
[CrossRef]

Anal. Chim. Acta

D. Erickson and D. Li, Anal. Chim. Acta 507, 11 (2004).
[CrossRef]

Colloids Surf., A

M. Tamagawa, H. Monjushiro, and H. Watarai, Colloids Surf., A 220, 279 (2003).
[CrossRef]

J. Micromech. Microeng.

A. Neild, S. Oberti, F. Beyeler, J. Dual, and B. J. Nelson, J. Micromech. Microeng. 16, 1562 (2006).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

R. L. Smith, G. C. Spalding, K. Dholakia, and M. P. MacDonald, J. Opt. A, Pure Appl. Opt. 9, S134 (2007).
[CrossRef]

Methods Cell Biol.

K. Dholakia, M. P. MacDonald, P. Zemanek, and T. Cizmar, Methods Cell Biol. 82, 467 (2007).
[CrossRef] [PubMed]

Nature

J. Rousselet, L. Salome, A. Ajdari, and J. Prost, Nature 370, 446 (1994).
[CrossRef] [PubMed]

M. P. MacDonald, G. C. Spalding, and K. Dholakia, Nature 426, 421 (2003).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. E

L. Gorre-Talini, S. Jeanjean, and P. Silberzan, Phys. Rev. E 56, 2025 (1997).
[CrossRef]

A. A. Dubkov and B. Spagnolo, Phys. Rev. E 72, 041104 (2005).
[CrossRef]

A. Haljas, R. Mankin, A. Sauga, and E. Reiter, Phys. Rev. E 70, 041107 (2004).
[CrossRef]

Phys. Rev. Lett.

M. O. Magnasco, Phys. Rev. Lett. 71, 1477 (1993).
[CrossRef] [PubMed]

C. R. Doering, W. Horsthemke, and J. Riordan, Phys. Rev. Lett. 72, 2984 (1994).
[CrossRef] [PubMed]

A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).
[CrossRef]

A. Libal, C. Reichhardt, B. Janko, and C. J. Olson Reichhardt, Phys. Rev. Lett. 96, 188301 (2006).
[CrossRef] [PubMed]

Physica A

C. R. Doering, Physica A 254, 1 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic description of particle-sorting technique. A mixture of two sized particles is delivered through a small aperture. A planar periodic but asymmetrical spatial potential in the x direction is cycled on and off in time and is oriented orthogonal to the input delivery of the particles. A constant force that does not interact with the asymmetric potential is applied downward in the y direction. The small and large particles are harvested from two apertures at the output.

Fig. 2
Fig. 2

Gaussian distribution (radius= 1 μ m ) of particles was initially assumed. At arbitrary time t 1 later, particles of 0.2 μ m size have a distribution displaced further from the starting point. The inset provides separation percentages of the 0.2 and 0.5 μ m particles obtained by keeping the potential on-state period at 0.09 s and varying the off-state period. Maximal separation was obtained using an off-state period of 0.4 s .

Fig. 3
Fig. 3

Plots of distance with which 99% of the 0.2 μ m particles reside to the right at specific times, and of which 99% of the 0.5 μ m particles reside to the left at specific times. The intersection of the two plots thus indicates a condition of 99% separation. The on- and off-state periods were 0.09 and 0.4 s , respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

m d 2 x d t 2 + d v ( x ) d x + β d x d t 2 β k T ξ ( x ) = 0 ,
m d 2 y d t 2 + d v ( y ) d y + β d y d t 2 β k T ξ ( y ) = 0 ,
β d x d t = d v ( x ) d x + 2 β k T ξ ,
β d y d t d v ( y ) d y = 2 P n R c w 2 Q ,

Metrics