Abstract

Two-dimensional optics with surface plasmons was realized by the use of topographically structured dielectric polymer coatings. Triangles of polymethylmetacrylate (PMMA) with lateral dimensions of some tens of micrometers on top of a silver layer act as two-dimensional prisms for surface plasmons. Refraction and internal reflection of plasmons were investigated by scanning near-field optical microscopy. The change in propagation direction can be explained by Snell’s law when taking an effective refractive index for plasmons into account. Furthermore, intensity modulations in the PMMA elements and in the transmitted plasmon beam were observed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. R. Zia, A. Schuller, A. Chandran, and M. L. Brongersma, Mater. Today 9, 20 (2006).
    [CrossRef]
  2. H. Raether, Surface Plasmons (Springer, 1988).
  3. H. Ditlbacher, J. R. Krenn, N. Felidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, Appl. Phys. Lett. 80, 404 (2002).
    [CrossRef]
  4. H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, Appl. Phys. Lett. 81, 1762 (2002).
    [CrossRef]
  5. J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, Phys. Rev. B 64, 045411 (2001).
    [CrossRef]
  6. R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, Opt. Express 13, 977 (2005).
    [CrossRef] [PubMed]
  7. A. Englisch, R. Schoen, and U. Hartmann, Proceedings of the 12th International Conference on Scanning Tunneling Microscopy/Spectroscopy and Related Techniques (STM) 2003, AIP Conf. Proc. 696, 211-216 (2003).
    [CrossRef]
  8. B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, Appl. Phys. Lett. 88, 094104 (2006).
    [CrossRef]
  9. M. U. González, J.-C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, and E. Devaux, Phys. Rev. B 73, 155416 (2006).
    [CrossRef]
  10. J.-C. Weeber, M. U. González, A. L. Baudrion, and A. Dereux, Appl. Phys. Lett. 87, 221101 (2005).
    [CrossRef]
  11. A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, and J. R. Krenn, Appl. Phys. B 84, 29 (2006).
    [CrossRef]
  12. A. Drezet, D. Koller, A. Hohenau, A. Leitner, and F. R. Aussenegg, Nano Lett. 7, 1697 (2007).
    [CrossRef] [PubMed]
  13. A. Drezet, A. L. Stepanow, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, Appl. Phys. Lett. 86, 074104 (2005).
    [CrossRef]
  14. A. Drezet, A. Hohenau, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, Plasmonics 1, 141 (2006).
    [CrossRef]
  15. H. J. Lezec, J. A. Dionne, and H. A. Atwater, Science 316, 430 (2007).
    [CrossRef] [PubMed]
  16. I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, Science 315, 1699 (2007).
    [CrossRef] [PubMed]
  17. A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, Opt. Lett. 30, 893 (2005).
    [CrossRef] [PubMed]
  18. S. Griesing, A. Englisch, and U. Hartmann, J. Phys. Conf. Ser. 61, 364 (2007).
    [CrossRef]
  19. K. Choi, H. Kim, Y. Lim, S. Kim, and B. Lee, Opt. Express 13, 8866 (2005).
    [CrossRef] [PubMed]

2007 (4)

H. J. Lezec, J. A. Dionne, and H. A. Atwater, Science 316, 430 (2007).
[CrossRef] [PubMed]

I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, Science 315, 1699 (2007).
[CrossRef] [PubMed]

S. Griesing, A. Englisch, and U. Hartmann, J. Phys. Conf. Ser. 61, 364 (2007).
[CrossRef]

A. Drezet, D. Koller, A. Hohenau, A. Leitner, and F. R. Aussenegg, Nano Lett. 7, 1697 (2007).
[CrossRef] [PubMed]

2006 (5)

A. Drezet, A. Hohenau, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, Plasmonics 1, 141 (2006).
[CrossRef]

R. Zia, A. Schuller, A. Chandran, and M. L. Brongersma, Mater. Today 9, 20 (2006).
[CrossRef]

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

M. U. González, J.-C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, and E. Devaux, Phys. Rev. B 73, 155416 (2006).
[CrossRef]

A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, and J. R. Krenn, Appl. Phys. B 84, 29 (2006).
[CrossRef]

2005 (5)

2003 (1)

A. Englisch, R. Schoen, and U. Hartmann, Proceedings of the 12th International Conference on Scanning Tunneling Microscopy/Spectroscopy and Related Techniques (STM) 2003, AIP Conf. Proc. 696, 211-216 (2003).
[CrossRef]

2002 (2)

H. Ditlbacher, J. R. Krenn, N. Felidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, Appl. Phys. Lett. 80, 404 (2002).
[CrossRef]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, Appl. Phys. Lett. 81, 1762 (2002).
[CrossRef]

2001 (1)

J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, Phys. Rev. B 64, 045411 (2001).
[CrossRef]

AIP Conf. Proc. (1)

A. Englisch, R. Schoen, and U. Hartmann, Proceedings of the 12th International Conference on Scanning Tunneling Microscopy/Spectroscopy and Related Techniques (STM) 2003, AIP Conf. Proc. 696, 211-216 (2003).
[CrossRef]

Appl. Phys. B (1)

A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, and J. R. Krenn, Appl. Phys. B 84, 29 (2006).
[CrossRef]

Appl. Phys. Lett. (5)

B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, Appl. Phys. Lett. 88, 094104 (2006).
[CrossRef]

A. Drezet, A. L. Stepanow, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, Appl. Phys. Lett. 86, 074104 (2005).
[CrossRef]

H. Ditlbacher, J. R. Krenn, N. Felidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, Appl. Phys. Lett. 80, 404 (2002).
[CrossRef]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, Appl. Phys. Lett. 81, 1762 (2002).
[CrossRef]

J.-C. Weeber, M. U. González, A. L. Baudrion, and A. Dereux, Appl. Phys. Lett. 87, 221101 (2005).
[CrossRef]

J. Phys. Conf. Ser. (1)

S. Griesing, A. Englisch, and U. Hartmann, J. Phys. Conf. Ser. 61, 364 (2007).
[CrossRef]

Mater. Today (1)

R. Zia, A. Schuller, A. Chandran, and M. L. Brongersma, Mater. Today 9, 20 (2006).
[CrossRef]

Nano Lett. (1)

A. Drezet, D. Koller, A. Hohenau, A. Leitner, and F. R. Aussenegg, Nano Lett. 7, 1697 (2007).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (2)

J.-C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, Phys. Rev. B 64, 045411 (2001).
[CrossRef]

M. U. González, J.-C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, and E. Devaux, Phys. Rev. B 73, 155416 (2006).
[CrossRef]

Plasmonics (1)

A. Drezet, A. Hohenau, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, Plasmonics 1, 141 (2006).
[CrossRef]

Science (2)

H. J. Lezec, J. A. Dionne, and H. A. Atwater, Science 316, 430 (2007).
[CrossRef] [PubMed]

I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, Science 315, 1699 (2007).
[CrossRef] [PubMed]

Other (1)

H. Raether, Surface Plasmons (Springer, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Refraction of plasmons for different PMMA prisms. Plasmons propagate from top to bottom.

Fig. 2
Fig. 2

Transition from plasmon refraction to internal reflection. Plasmons propagate from top to bottom.

Fig. 3
Fig. 3

(a) Dispersion relation of the silver/PMMA system. Real and imaginary part of the surface plasmon wave vector are displayed as solid and dashed curves, “c” and “d” indicate the points at which FEM simulations (c) and (d) are performed. (b) Scheme of the cross section of the plasmon device. (c), (d) FEM modeling of the magnitude of the magnetic field along the propagation direction (logarithmic scale). Plasmons propagate from right to left. (c) Excitation wavelength 673 nm ( ε Ag > ε PMMA ) and (d) excitation wavelength 365 nm ( ε Ag < ε PMMA ) .

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n eff SP = k x metal dielectric k x metal air ,
1 + r 01 r 123 e 2 i k z 1 d 1 = 0 ,
r 123 = r 12 + r 23 e 2 i k z 2 d 2 1 + r 12 r 23 e 2 i k z 2 d 2 ,
r i j = ( k z i ε i k z j ε j ) ( k z i ε i + k z j ε j ) 1 ,
k z i = ε i ( ω c ) 2 k x i 2 ,
k x i = ω c ε i ε j ε i + ε j .

Metrics