Abstract

We introduce the Lévy fractional Brownian field family to model the turbulent wavefront phase. This generalized model allows us to overcome the limitations found in a previous approach [Perez et al., J. Opt. Soc. Am. A 21, 1962 (2004)]. More precisely, our new model provides stationary phase increments over the full inertial range. Thus it successfully extends classical results to non-Kolmogorov turbulence without any approximation.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. R. G. Buser, J. Opt. Soc. Am. 61, 488 (1971).
    [CrossRef]
  2. M. Bester, W. C. Danchi, C. G. Degiacomi, L. J. Greenhill, and C. H. Townes, Astrophys. J. 392, 357 (1992).
    [CrossRef]
  3. D. Dayton, B. Pierson, B. Spielbusch, and J. Gonglewski, Opt. Lett. 17, 1737 (1992).
    [CrossRef] [PubMed]
  4. D. S. Acton, Appl. Opt. 34, 4526 (1995).
    [CrossRef] [PubMed]
  5. T. W. Nicholls, G. D. Boreman, and J. C. Dainty, Opt. Lett. 20, 2460 (1995).
    [CrossRef] [PubMed]
  6. G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance, Stochastic Modeling (Chapman & Hall/CRC1994).
  7. C. Schwartz, G. Baum, and E. N. Ribak, J. Opt. Soc. Am. A 11, 444 (1994).
    [CrossRef]
  8. E. N. Ribak, E. Gershnik, and M. Cheselka, Opt. Lett. 21, 435 (1996).
    [CrossRef] [PubMed]
  9. A. Belmonte, A. Comeron, J. A. Rubio, J. Bara, and E. Fernandez, Appl. Opt. 36, 8632 (1997).
    [CrossRef]
  10. C. Dessenne, P. Y. Madec, and G. Rousset, Appl. Opt. 37, 4623 (1998).
    [CrossRef]
  11. D. R. McGaughey and G. J. M. Aitken, J. Opt. Soc. Am. A 14, 1967 (1997).
    [CrossRef]
  12. R. A. Johnston and R. G. Lane, Appl. Opt. 39, 4761 (2000).
    [CrossRef]
  13. D. G. Pérez, L. Zunino, and M. Garavaglia, J. Opt. Soc. Am. A 21, 1962 (2004).
    [CrossRef]
  14. R. J. Elliott and J. van der Hoek, Math. Finance 13, 301 (2003).
    [CrossRef]
  15. E. Herbin, Rocky Mountain J. Math. 36, 1249 (2006).
    [CrossRef]
  16. D. L. Fried, J. Opt. Soc. Am. 56, 1372 (1966).
    [CrossRef]
  17. V. I. Tatarskĭ, Wave Propagation in a Turbulent Atmosphere (Nauka, 1967). [In Russian; English translation: The Effect of the Turbulent Atmosphere on Wave Propagation (NTIS, 1971)].
  18. M. Sarazin and F. Roddier, Astron. Astrophys. 227, 294 (1990).
  19. S. S. Olivier, C. E. Max, D. T. Gavel, and J. M. Brase, Astrophys. J. 407, 428 (1993).
    [CrossRef]
  20. J.-M. Bardet and P. Bertrand, J. Time Ser. Anal. 28, 1 (2007).
    [CrossRef]

2007

J.-M. Bardet and P. Bertrand, J. Time Ser. Anal. 28, 1 (2007).
[CrossRef]

2006

E. Herbin, Rocky Mountain J. Math. 36, 1249 (2006).
[CrossRef]

2004

2003

R. J. Elliott and J. van der Hoek, Math. Finance 13, 301 (2003).
[CrossRef]

2000

1998

1997

1996

1995

1994

1993

S. S. Olivier, C. E. Max, D. T. Gavel, and J. M. Brase, Astrophys. J. 407, 428 (1993).
[CrossRef]

1992

M. Bester, W. C. Danchi, C. G. Degiacomi, L. J. Greenhill, and C. H. Townes, Astrophys. J. 392, 357 (1992).
[CrossRef]

D. Dayton, B. Pierson, B. Spielbusch, and J. Gonglewski, Opt. Lett. 17, 1737 (1992).
[CrossRef] [PubMed]

1990

M. Sarazin and F. Roddier, Astron. Astrophys. 227, 294 (1990).

1971

1966

Appl. Opt.

Astron. Astrophys.

M. Sarazin and F. Roddier, Astron. Astrophys. 227, 294 (1990).

Astrophys. J.

S. S. Olivier, C. E. Max, D. T. Gavel, and J. M. Brase, Astrophys. J. 407, 428 (1993).
[CrossRef]

M. Bester, W. C. Danchi, C. G. Degiacomi, L. J. Greenhill, and C. H. Townes, Astrophys. J. 392, 357 (1992).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Time Ser. Anal.

J.-M. Bardet and P. Bertrand, J. Time Ser. Anal. 28, 1 (2007).
[CrossRef]

Math. Finance

R. J. Elliott and J. van der Hoek, Math. Finance 13, 301 (2003).
[CrossRef]

Opt. Lett.

Rocky Mountain J. Math.

E. Herbin, Rocky Mountain J. Math. 36, 1249 (2006).
[CrossRef]

Other

V. I. Tatarskĭ, Wave Propagation in a Turbulent Atmosphere (Nauka, 1967). [In Russian; English translation: The Effect of the Turbulent Atmosphere on Wave Propagation (NTIS, 1971)].

G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance, Stochastic Modeling (Chapman & Hall/CRC1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (12)

Equations on this page are rendered with MathJax. Learn more.

D φ ( r r ) = C φ , β 2 ( r r r 0 , β ) β 2 ,
E [ B H ( r ) B H ( r ) ] = σ 2 2 ( r 2 H + r 2 H r r 2 H ) ;
B H ( r ) = 1 2 C 2 , H R 2 ( e i r ν 1 ) ν H + 1 W ̂ ( d 2 ν ) ,
φ ( R ρ ) = A φ , H R H B H ( ρ ) , ρ 1 ,
D φ [ R ( ρ ρ ) ] = A φ , H 2 R 2 H ρ ρ 2 H
A φ , H 2 = 2 2 H + 1 Γ H ( 1 + 1 H ) r 0 , H 2 H .
ϕ ( R ρ ) = A φ , H R H [ B H ( ρ ) 1 π ρ 1 B H ( ρ ) d 2 ρ ] .
A φ , H 2 R 2 H { 1 1 + H π C 2 , H 0 [ 2 J 1 ( ν ) ν 1 ] 2 ν 2 H + 1 d ν } = A φ , H 2 R 2 H Γ ( 2 + 2 H ) Γ ( 2 + H ) Γ ( 3 + H ) .
A φ , H 2 = 2 2 H Γ ( 2 + H ) Γ ( 3 + H ) Γ ( 2 + 2 H ) r 0 , H 2 H .
α ( r ) = λ 2 π φ ( r ) = C z , H r 0 , H 2 H B H ( r ) ,
σ m , H 2 ( ϕ r ) = E α ( ϕ r ) 2 = 2 π 2 C z , H 2 r 0 , H 2 H C 2 , H R 2 | ϕ ̂ ( ν ) | 2 ν 2 H d 2 ν ,
σ m , H 2 ( ϕ r ) = 4 H Γ ( H + 1 2 ) π 1 2 Γ ( 2 + H ) C φ , H 2 2 π 2 λ 2 D 2 H 2 r 0 , H 2 H .

Metrics