Abstract

A new and general approach to enhance band-edge emission at the expense of defect emission in a semiconductor nanocomposite is proposed. The underlying mechanism is based on the resonance effect between defect transition and band-to-band excitation and transfer of excited electrons between conduction band edges. With our approach, it is possible to convert defect loss into bandgap emission. As an example, we demonstrate that the bandgap emission of ZnO nanorods can be enhanced by as much as 30 times when they are compounded with CdSeZnS nanoparticles.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, Nat. Mater. 4, 42 (2005).
    [CrossRef]
  2. A. Ohtomo and A. Tsukazaki, Semicond. Sci. Technol. 20, S1 (2005).
    [CrossRef]
  3. J. Nauseand and B. Nemeth, Semicond. Sci. Technol. 20, S45 (2005).
    [CrossRef]
  4. H. Y. Lin, C. L. Cheng, Y. Y. Chou, L. L. Huang, and Y. F. Chen, Opt. Express 14, 2372 (2006).
    [CrossRef] [PubMed]
  5. X. M. Fan, J. S. Lian, Z. X. Guo, and H. J. Lu, Appl. Surf. Sci. 239, 176 (2005).
    [CrossRef]
  6. P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, Solid State Commun. 103, 459 (1997).
    [CrossRef]
  7. X. W. Sun and H. S. Kwok, J. Appl. Phys. 86, 408 (1999).
    [CrossRef]
  8. J. M. Lin, C. L. Cheng, H. Y. Lin, and Y. F. Chen, Opt. Lett. 31, 3173 (2006).
    [CrossRef] [PubMed]
  9. N. E. Hsu, W. K. Hung, and Y. F. Chen, J. Appl. Phys. 96, 4671 (2004).
    [CrossRef]
  10. P. Reiss, J. Blense, and A. Pron, Nano Lett. 2, 781 (2002).
    [CrossRef]
  11. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, J. Phys. Chem. B 101, 9463 (1997).
    [CrossRef]
  12. N. R. Jana, L. Gearheart, and C. J. Murphy, Langmuir 17, 6782 (2001).
    [CrossRef]
  13. Xu. Yong and A. A. S. Martin, Am. Mineral. 85, 543 (2000).
  14. S. A. Surma, Phys. Status Solidi A 183, 307 (2001).
    [CrossRef]
  15. M. G. Bawendi, M. L. Steigerwald, and L. E. Brus, Annu. Rev. Phys. Chem. 41, 477 (1990).
    [CrossRef]
  16. J. Tittel, W. Gohde, F. Koberling, T. Basche, A. Kornowski, H. Weller, and A. Eychmuller, J. Phys. Chem. B 101, 3013 (1997).
    [CrossRef]
  17. M. Bruchez, Jr., M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, Science 281, 2013 (1998).
    [CrossRef] [PubMed]
  18. Th. Förster, Ann. Phys. 2, 55 (1948).
    [CrossRef]
  19. G. W. Gordon, G. Berry, X. H. Liang, B. Levine, and B. Herman, Biophys. J. 74, 2702 (1998).
    [CrossRef] [PubMed]
  20. C. Berney and G. Danuser, Biophys. J. 84, 3992 (2003).
    [CrossRef] [PubMed]
  21. J. Franck and R. Livingston, Rev. Mod. Phys. 21, 505 (1949).
    [CrossRef]
  22. S. Speiser, Chem. Rev. 96, 1953 (1996).
    [CrossRef] [PubMed]
  23. G. D. Scholes, Annu. Rev. Phys. Chem. 54, 57 (2003).
    [CrossRef]
  24. M. Achermann, M. A. Petruska, S. Kos, D. L. Smith, D. D. Koleske, and V. I. Klimov, Nature 429, 642 (2004).
    [CrossRef] [PubMed]
  25. S. Blumstengel, S. Sadofev, C. Xu, J. Puls, and F. Henneberger, Phys. Rev. Lett. 97, 237401 (2006).
    [CrossRef]

2006 (3)

2005 (4)

A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, Nat. Mater. 4, 42 (2005).
[CrossRef]

A. Ohtomo and A. Tsukazaki, Semicond. Sci. Technol. 20, S1 (2005).
[CrossRef]

J. Nauseand and B. Nemeth, Semicond. Sci. Technol. 20, S45 (2005).
[CrossRef]

X. M. Fan, J. S. Lian, Z. X. Guo, and H. J. Lu, Appl. Surf. Sci. 239, 176 (2005).
[CrossRef]

2004 (2)

N. E. Hsu, W. K. Hung, and Y. F. Chen, J. Appl. Phys. 96, 4671 (2004).
[CrossRef]

M. Achermann, M. A. Petruska, S. Kos, D. L. Smith, D. D. Koleske, and V. I. Klimov, Nature 429, 642 (2004).
[CrossRef] [PubMed]

2003 (2)

G. D. Scholes, Annu. Rev. Phys. Chem. 54, 57 (2003).
[CrossRef]

C. Berney and G. Danuser, Biophys. J. 84, 3992 (2003).
[CrossRef] [PubMed]

2002 (1)

P. Reiss, J. Blense, and A. Pron, Nano Lett. 2, 781 (2002).
[CrossRef]

2001 (2)

N. R. Jana, L. Gearheart, and C. J. Murphy, Langmuir 17, 6782 (2001).
[CrossRef]

S. A. Surma, Phys. Status Solidi A 183, 307 (2001).
[CrossRef]

2000 (1)

Xu. Yong and A. A. S. Martin, Am. Mineral. 85, 543 (2000).

1999 (1)

X. W. Sun and H. S. Kwok, J. Appl. Phys. 86, 408 (1999).
[CrossRef]

1998 (2)

M. Bruchez, Jr., M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, Science 281, 2013 (1998).
[CrossRef] [PubMed]

G. W. Gordon, G. Berry, X. H. Liang, B. Levine, and B. Herman, Biophys. J. 74, 2702 (1998).
[CrossRef] [PubMed]

1997 (3)

J. Tittel, W. Gohde, F. Koberling, T. Basche, A. Kornowski, H. Weller, and A. Eychmuller, J. Phys. Chem. B 101, 3013 (1997).
[CrossRef]

P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, Solid State Commun. 103, 459 (1997).
[CrossRef]

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, J. Phys. Chem. B 101, 9463 (1997).
[CrossRef]

1996 (1)

S. Speiser, Chem. Rev. 96, 1953 (1996).
[CrossRef] [PubMed]

1990 (1)

M. G. Bawendi, M. L. Steigerwald, and L. E. Brus, Annu. Rev. Phys. Chem. 41, 477 (1990).
[CrossRef]

1949 (1)

J. Franck and R. Livingston, Rev. Mod. Phys. 21, 505 (1949).
[CrossRef]

1948 (1)

Th. Förster, Ann. Phys. 2, 55 (1948).
[CrossRef]

Am. Mineral. (1)

Xu. Yong and A. A. S. Martin, Am. Mineral. 85, 543 (2000).

Ann. Phys. (1)

Th. Förster, Ann. Phys. 2, 55 (1948).
[CrossRef]

Annu. Rev. Phys. Chem. (2)

M. G. Bawendi, M. L. Steigerwald, and L. E. Brus, Annu. Rev. Phys. Chem. 41, 477 (1990).
[CrossRef]

G. D. Scholes, Annu. Rev. Phys. Chem. 54, 57 (2003).
[CrossRef]

Appl. Surf. Sci. (1)

X. M. Fan, J. S. Lian, Z. X. Guo, and H. J. Lu, Appl. Surf. Sci. 239, 176 (2005).
[CrossRef]

Biophys. J. (2)

G. W. Gordon, G. Berry, X. H. Liang, B. Levine, and B. Herman, Biophys. J. 74, 2702 (1998).
[CrossRef] [PubMed]

C. Berney and G. Danuser, Biophys. J. 84, 3992 (2003).
[CrossRef] [PubMed]

Chem. Rev. (1)

S. Speiser, Chem. Rev. 96, 1953 (1996).
[CrossRef] [PubMed]

J. Appl. Phys. (2)

X. W. Sun and H. S. Kwok, J. Appl. Phys. 86, 408 (1999).
[CrossRef]

N. E. Hsu, W. K. Hung, and Y. F. Chen, J. Appl. Phys. 96, 4671 (2004).
[CrossRef]

J. Phys. Chem. B (2)

B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen, and M. G. Bawendi, J. Phys. Chem. B 101, 9463 (1997).
[CrossRef]

J. Tittel, W. Gohde, F. Koberling, T. Basche, A. Kornowski, H. Weller, and A. Eychmuller, J. Phys. Chem. B 101, 3013 (1997).
[CrossRef]

Langmuir (1)

N. R. Jana, L. Gearheart, and C. J. Murphy, Langmuir 17, 6782 (2001).
[CrossRef]

Nano Lett. (1)

P. Reiss, J. Blense, and A. Pron, Nano Lett. 2, 781 (2002).
[CrossRef]

Nat. Mater. (1)

A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, Nat. Mater. 4, 42 (2005).
[CrossRef]

Nature (1)

M. Achermann, M. A. Petruska, S. Kos, D. L. Smith, D. D. Koleske, and V. I. Klimov, Nature 429, 642 (2004).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

S. Blumstengel, S. Sadofev, C. Xu, J. Puls, and F. Henneberger, Phys. Rev. Lett. 97, 237401 (2006).
[CrossRef]

Phys. Status Solidi A (1)

S. A. Surma, Phys. Status Solidi A 183, 307 (2001).
[CrossRef]

Rev. Mod. Phys. (1)

J. Franck and R. Livingston, Rev. Mod. Phys. 21, 505 (1949).
[CrossRef]

Science (1)

M. Bruchez, Jr., M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, Science 281, 2013 (1998).
[CrossRef] [PubMed]

Semicond. Sci. Technol. (2)

A. Ohtomo and A. Tsukazaki, Semicond. Sci. Technol. 20, S1 (2005).
[CrossRef]

J. Nauseand and B. Nemeth, Semicond. Sci. Technol. 20, S45 (2005).
[CrossRef]

Solid State Commun. (1)

P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, Solid State Commun. 103, 459 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Scanning electron microscope image of ZnO nanorods (top view).

Fig. 2
Fig. 2

PL spectra of ZnO nanorods coated with CdSe ZnS QDs (dashed curve) pure ZnO nanorods (solid curve), and pure CdSe ZnS quantum dots ( × 1 5 , dotted curve).

Fig. 3
Fig. 3

Band alignment of ZnO nanorods and CdSe QDs, showing that carriers can transfer from CdSe ZnS QDs to ZnO nanorods and enhance the bandgap emission of ZnO nanorods. It also shows that if the defect transition of ZnO is in resonance with the band excitation of CdSe , the defect loss may be converted into bandgap emission.

Fig. 4
Fig. 4

PL spectra of pure ZnO nanorods (solid curve), pure CdSe ZnS quantum dots ( × 1 5 , dotted curve), and the composite of ZnO nanorods and CdSe ZnS QDs (dashed curve). Here, the defect transition of ZnO nanorods is in resonance with the bandgap excitation of CdSe ZnS quantum dots.

Metrics