Abstract

We demonstrate, both theoretically and experimentally, that special spectral-purity-enhancing multilayer mirror systems can be designed and fabricated to substantially reduce the level of out-of-band radiation expected in an extreme ultraviolet lithographic tool. A first proof of principle of applying such spectral-purity-enhancement layers showed reduced out-of-band reflectance by a factor of five, while the in-band reflectance is only 4.5% (absolute) less than for a standard capped multilayer.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. V. Banine and R. Moors, J. Phys. D 37, 3207 (2004).
    [CrossRef]
  2. J. Jonkers, Plasma Sources Sci. Technol. 15, S8 (2006).
    [CrossRef]
  3. R. L. Brainard, C. Henderson, J. Cobb, V. Rao, J. F. Mackevich, U. Okoroanyanwu, S. Gunn, J. Chambers, and S. Connolly, J. Vac. Sci. Technol. B 17, 3384 (1999).
    [CrossRef]
  4. R. H. Stulen and D. W. Sweeney, IEEE J. Quantum Electron. 35, 694 (1999).
    [CrossRef]
  5. L. Shmaenok, N. N. Salashchenko, V. I. Luchin, A. Ya. Lopatin, and N. N. Zybin, EUV Sematech EUV Source Workshop, Barcelona (2006).
  6. I. A. Artyukov, A. I. Fedorenko, V. V. Kondratenko, S. A. Yulin, and A. V. Vinogradov, Opt. Commun. 102, 401 (1993).
    [CrossRef]
  7. P. P. Naulleau, W. C. Sweatt, and D. A. Tichenor, Opt. Commun. 214, 31 (2002).
    [CrossRef]
  8. J. A. Liddle, F. Salmassi, P. P. Naulleau, and E. M. Gullikson, J. Vac. Sci. Technol. B 212980 (2003).
    [CrossRef]
  9. E.D.Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).
  10. E. Louis, H. J. Voorma, K. B. Koster, L. Shmaenok, F. Bijkerk, R. Schlatmann, J. Verhoeven, Y. Y. Platonov, G. E. Vandorssen, and H. A. Padmore, Microelectron. Eng. 23, 215 (1994).
    [CrossRef]
  11. E. Spiller, Soft X-ray Optics (SPIE Optical Engineering Press, 1994), p. 170.
  12. R. Schlatmann, S. Lu, J. Verhoeven, E. J. Puik, and M. J. van der Wiel, Appl. Surf. Sci. 78, 147 (1994).
    [CrossRef]
  13. A. Gottwald, U. Kroth, M. Letz, H. Schoeppe, and M. Richter, Proc. SPIE 5538, 157 (2004).
    [CrossRef]
  14. R. Stuik, F. Scholze, J. Tummler, and F. Bijkerk, Nucl. Instrum. Methods Phys. Res. A 492305 (2002).
    [CrossRef]
  15. D. L. Windt, Comput. Phys. 12, 360 (1998).
    [CrossRef]

2006

J. Jonkers, Plasma Sources Sci. Technol. 15, S8 (2006).
[CrossRef]

2004

V. Banine and R. Moors, J. Phys. D 37, 3207 (2004).
[CrossRef]

A. Gottwald, U. Kroth, M. Letz, H. Schoeppe, and M. Richter, Proc. SPIE 5538, 157 (2004).
[CrossRef]

2003

J. A. Liddle, F. Salmassi, P. P. Naulleau, and E. M. Gullikson, J. Vac. Sci. Technol. B 212980 (2003).
[CrossRef]

2002

P. P. Naulleau, W. C. Sweatt, and D. A. Tichenor, Opt. Commun. 214, 31 (2002).
[CrossRef]

R. Stuik, F. Scholze, J. Tummler, and F. Bijkerk, Nucl. Instrum. Methods Phys. Res. A 492305 (2002).
[CrossRef]

1999

R. L. Brainard, C. Henderson, J. Cobb, V. Rao, J. F. Mackevich, U. Okoroanyanwu, S. Gunn, J. Chambers, and S. Connolly, J. Vac. Sci. Technol. B 17, 3384 (1999).
[CrossRef]

R. H. Stulen and D. W. Sweeney, IEEE J. Quantum Electron. 35, 694 (1999).
[CrossRef]

1998

D. L. Windt, Comput. Phys. 12, 360 (1998).
[CrossRef]

1994

E. Louis, H. J. Voorma, K. B. Koster, L. Shmaenok, F. Bijkerk, R. Schlatmann, J. Verhoeven, Y. Y. Platonov, G. E. Vandorssen, and H. A. Padmore, Microelectron. Eng. 23, 215 (1994).
[CrossRef]

R. Schlatmann, S. Lu, J. Verhoeven, E. J. Puik, and M. J. van der Wiel, Appl. Surf. Sci. 78, 147 (1994).
[CrossRef]

1993

I. A. Artyukov, A. I. Fedorenko, V. V. Kondratenko, S. A. Yulin, and A. V. Vinogradov, Opt. Commun. 102, 401 (1993).
[CrossRef]

Appl. Surf. Sci.

R. Schlatmann, S. Lu, J. Verhoeven, E. J. Puik, and M. J. van der Wiel, Appl. Surf. Sci. 78, 147 (1994).
[CrossRef]

Comput. Phys.

D. L. Windt, Comput. Phys. 12, 360 (1998).
[CrossRef]

IEEE J. Quantum Electron.

R. H. Stulen and D. W. Sweeney, IEEE J. Quantum Electron. 35, 694 (1999).
[CrossRef]

J. Phys. D

V. Banine and R. Moors, J. Phys. D 37, 3207 (2004).
[CrossRef]

J. Vac. Sci. Technol. B

J. A. Liddle, F. Salmassi, P. P. Naulleau, and E. M. Gullikson, J. Vac. Sci. Technol. B 212980 (2003).
[CrossRef]

R. L. Brainard, C. Henderson, J. Cobb, V. Rao, J. F. Mackevich, U. Okoroanyanwu, S. Gunn, J. Chambers, and S. Connolly, J. Vac. Sci. Technol. B 17, 3384 (1999).
[CrossRef]

Microelectron. Eng.

E. Louis, H. J. Voorma, K. B. Koster, L. Shmaenok, F. Bijkerk, R. Schlatmann, J. Verhoeven, Y. Y. Platonov, G. E. Vandorssen, and H. A. Padmore, Microelectron. Eng. 23, 215 (1994).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. A

R. Stuik, F. Scholze, J. Tummler, and F. Bijkerk, Nucl. Instrum. Methods Phys. Res. A 492305 (2002).
[CrossRef]

Opt. Commun.

I. A. Artyukov, A. I. Fedorenko, V. V. Kondratenko, S. A. Yulin, and A. V. Vinogradov, Opt. Commun. 102, 401 (1993).
[CrossRef]

P. P. Naulleau, W. C. Sweatt, and D. A. Tichenor, Opt. Commun. 214, 31 (2002).
[CrossRef]

Plasma Sources Sci. Technol.

J. Jonkers, Plasma Sources Sci. Technol. 15, S8 (2006).
[CrossRef]

Proc. SPIE

A. Gottwald, U. Kroth, M. Letz, H. Schoeppe, and M. Richter, Proc. SPIE 5538, 157 (2004).
[CrossRef]

Other

E. Spiller, Soft X-ray Optics (SPIE Optical Engineering Press, 1994), p. 170.

L. Shmaenok, N. N. Salashchenko, V. I. Luchin, A. Ya. Lopatin, and N. N. Zybin, EUV Sematech EUV Source Workshop, Barcelona (2006).

E.D.Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Near-normal incidence reflectance for a standard capped Mo Si multilayer (triangles) and a SPE multilayer (dots). The lines represent IMD calculations.

Fig. 2
Fig. 2

Near-normal incidence reflectance in the EUV band.

Fig. 3
Fig. 3

SPE induced DUV suppression depending on the number of 5 nm Si 3 N 4 SPE layers with a standard cap material on top. The shaded area indicates the target wavelength range. The DUV suppression is the ratio of DUV reflectivity and EUV reflectivity. Two SPE layers are sufficient to suppress the DUV power down to below 10%.

Fig. 4
Fig. 4

Average DUV suppression from 130 190 nm for SPE layers of diamond, Si 3 N 4 , and amorphous carbon without further capping layer. A DUV suppression of 10% means that the EUV/DUV ratio improves with one order of magnitude.

Tables (1)

Tables Icon

Table 1 Amplitude Reflection and Transmission at the Interfaces for Si 3 N 4 AR Coating (Wavelength of 200 nm )

Metrics