Abstract

A plasmonic electro-optic modulator design using an evanescently coupled resonant metal grating is numerically studied in this Letter. Owing to excitation and propagation of long-range surface plasmons between the metal grating nanowires, a deep and narrow reflection dip can be obtained. Improved modulation performance is achieved through decreased damping from large dielectric gaps between the grating nanowires. An optimized electro-optic modulator design with lower insertion loss and low operating voltage is presented.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  2. J. S. Schildkraut, Appl. Opt. 27, 4587 (1988).
    [CrossRef] [PubMed]
  3. O. Solgaard, F. Ho, J. I. Thackara, and D. M. Bloom, Appl. Phys. Lett. 61, 2500 (1992).
    [CrossRef]
  4. C. Jung, S. Yee, and K. Kuhn, Appl. Opt. 34, 946 (1995).
    [CrossRef] [PubMed]
  5. A. V. Krasavin, K. F. MacDonald, and N. I. Zheludev, Appl. Phys. Lett. 85, 3369 (2004).
    [CrossRef]
  6. J. J. Chyou, S. C. Chu, Z. H. Shih, C. Y. Lin, and S. J. Chen, Opt. Eng. 44, 034001 (2005).
    [CrossRef]
  7. R. Naraoka and K. Kajikawa, Sens. Actuators B 107, 952 (2005).
    [CrossRef]
  8. B. P. Nelson, A. G. Frutos, J. M. Brockman, and R. M. Corn, Anal. Chem. 91, 3928 (1999).
    [CrossRef]
  9. H. P. Chiang, H. T. Yeh, C. M. Chen, J. C. Wu, S. Y. Su, R. Chang, Y. J. Wu, D. P. Tsai, S. U. Jen, and P. T. Leung, Opt. Commun. 241, 409 (2004).
    [CrossRef]
  10. H. P. Chiang, J. L. Lin, R. Chang, and S. Y. Su, Opt. Lett. 30, 2727 (2005).
    [CrossRef] [PubMed]
  11. M. G. Moharam, E. B. Grann, and D. A. Pommet, J. Opt. Soc. Am. A 12, 1068 (1995).
    [CrossRef]
  12. Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K. Y. Jen, and N. Peyghambarian, Nat. Photonics 1, 180 (2007).
    [CrossRef]
  13. M. McClimans, C. LaPlante, D. Bonner, and S. Bali, Appl. Opt. 45, 6477 (2006).
    [CrossRef] [PubMed]

2007 (1)

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K. Y. Jen, and N. Peyghambarian, Nat. Photonics 1, 180 (2007).
[CrossRef]

2006 (1)

2005 (3)

H. P. Chiang, J. L. Lin, R. Chang, and S. Y. Su, Opt. Lett. 30, 2727 (2005).
[CrossRef] [PubMed]

J. J. Chyou, S. C. Chu, Z. H. Shih, C. Y. Lin, and S. J. Chen, Opt. Eng. 44, 034001 (2005).
[CrossRef]

R. Naraoka and K. Kajikawa, Sens. Actuators B 107, 952 (2005).
[CrossRef]

2004 (2)

H. P. Chiang, H. T. Yeh, C. M. Chen, J. C. Wu, S. Y. Su, R. Chang, Y. J. Wu, D. P. Tsai, S. U. Jen, and P. T. Leung, Opt. Commun. 241, 409 (2004).
[CrossRef]

A. V. Krasavin, K. F. MacDonald, and N. I. Zheludev, Appl. Phys. Lett. 85, 3369 (2004).
[CrossRef]

1999 (1)

B. P. Nelson, A. G. Frutos, J. M. Brockman, and R. M. Corn, Anal. Chem. 91, 3928 (1999).
[CrossRef]

1995 (2)

1992 (1)

O. Solgaard, F. Ho, J. I. Thackara, and D. M. Bloom, Appl. Phys. Lett. 61, 2500 (1992).
[CrossRef]

1988 (1)

Anal. Chem. (1)

B. P. Nelson, A. G. Frutos, J. M. Brockman, and R. M. Corn, Anal. Chem. 91, 3928 (1999).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

A. V. Krasavin, K. F. MacDonald, and N. I. Zheludev, Appl. Phys. Lett. 85, 3369 (2004).
[CrossRef]

O. Solgaard, F. Ho, J. I. Thackara, and D. M. Bloom, Appl. Phys. Lett. 61, 2500 (1992).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nat. Photonics (1)

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K. Y. Jen, and N. Peyghambarian, Nat. Photonics 1, 180 (2007).
[CrossRef]

Opt. Commun. (1)

H. P. Chiang, H. T. Yeh, C. M. Chen, J. C. Wu, S. Y. Su, R. Chang, Y. J. Wu, D. P. Tsai, S. U. Jen, and P. T. Leung, Opt. Commun. 241, 409 (2004).
[CrossRef]

Opt. Eng. (1)

J. J. Chyou, S. C. Chu, Z. H. Shih, C. Y. Lin, and S. J. Chen, Opt. Eng. 44, 034001 (2005).
[CrossRef]

Opt. Lett. (1)

Sens. Actuators B (1)

R. Naraoka and K. Kajikawa, Sens. Actuators B 107, 952 (2005).
[CrossRef]

Other (1)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Diagram of plasmonic EO modulator design using a resonant metal grating. A collimated p-polarized He–Ne laser beam ( 633 nm ) is incident onto the base of the prism with an index-matched indium–tin–oxide (ITO) layer. An EO polymer layer with thickness d is sandwiched between the ITO layer and a thin resonant metal grating. The same EO polymer fills in between the metal grating lines. The metal grating is deposited onto a glass substrate with a refractive index matched to the EO polymer. The ITO layer serves as one electrode.

Fig. 2
Fig. 2

Dependence of the SPR location, width, and depth on the grating duty cycle f, the grating height h, and EO polymer layer thickness d. (a) Effect of duty cycle f with d = 2 μ m and h = 10 nm ; (b) effect of EO polymer thickness d with h = 10 nm and f = 40 % ; (c) effect of grating height with d = 2 μ m and f = 20 % ; (d) reflectivity curve for f = 20 % , h = 10 nm , and d = 2 μ m as the optimal design. For comparison, the curve for 10 nm uniform film ( f = 100 % ) with an optimized polymer-layer thickness of 1.1 μ m is also shown in (a).

Fig. 3
Fig. 3

SPR shift with different refractive-index changes of EO polymer. (a) EO modulator using resonant gold grating; (b) EO modulator with gold film.

Fig. 4
Fig. 4

Field distribution at resonant angle for the proposed structure. (a) H y 2 , (b) phase of H y , (c) zoom-in of H y 2 distribution inside and near the grating, (d) line scans of the field distribution across the metal and polymer regions of the grating. The line scan locations are shown in (c). The plot for E x across the metal region is also shown and clearly demonstrates the characteristic of LRSP.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ n = n 1 3 r V 2 d ,

Metrics