Abstract

A near-infrared metamaterial design that is reconfigurable between almost completely transmissive and reflective states is presented. The reconfiguration is enabled by tuning the anisotropic nematic liquid crystals used as a spacer layer between two silver nanoplates in a planar doubly periodic metamaterial. The design is optimized for maximum difference in transmittance between the two states by using a genetic algorithm. For a linearly polarized illumination at normal incidence, full-wave electromagnetic analysis predicts that the optimized metamaterial film can change the transmittance between 98.7% and 0.1% at a wavelength of 1.1μm.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. R. L. Fante and M. T. McCormack, IEEE Trans. Antennas Propag. 36, 1443 (1988).
    [CrossRef]
  2. J. Ward, Vacuum 22, 369 (1972).
    [CrossRef]
  3. B. E. Yoldas and D. P. Partlow, Appl. Opt. 23, 1418 (1984).
    [CrossRef] [PubMed]
  4. J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006).
    [CrossRef] [PubMed]
  5. A. Alù and N. Engheta, Phys. Rev. E 72, 016623 (2005).
    [CrossRef]
  6. X. Zhou and G. Hu, Phys. Rev. E 74, 026607 (2006).
    [CrossRef]
  7. I.-C. Khoo, D. H. Werner, X. Liang, A. Diaz, and B. Weiner, Opt. Lett. 31, 2592 (2006).
    [CrossRef] [PubMed]
  8. D. H. Werner, D.-H. Kwon, I.-C. Khoo, A. V. Kildishev, and V. M. Shalaev, Opt. Express 15, 3342 (2007).
    [CrossRef] [PubMed]
  9. X. Wang, D.-H. Kwon, D. H. Werner, I.-C. Khoo, A. V. Kildishev, and V. M. Shalaev, Appl. Phys. Lett. 91, 143122 (2007).
    [CrossRef]
  10. R. L. Haupt and D. H. Werner, Genetic Algorithms in Electromagnetics (Wiley, 2007).
    [CrossRef]
  11. I.-C. Khoo, Liquid Crystals (Wiley, 2007).
    [CrossRef]
  12. A. E. Miroshnichenko, I. Pinkevych, and Y. S. Kivshar, Opt. Express 14, 2839 (2006).
    [CrossRef] [PubMed]
  13. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, Opt. Lett. 31, 1800 (2006).
    [CrossRef] [PubMed]
  14. J. L. Volakis, A. Chatterjee, and L. C. Kempel, Finite Element Method for Electromagnetics (IEEE Press, 1998).
    [CrossRef]
  15. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, Phys. Rev. B 65, 195104 (2002).
    [CrossRef]
  16. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
    [CrossRef]
  17. S. Gauza, C.-H. Wen, S.-T. Wu, R. Darbrowski, C.-S. Hsu, C.-O. Catanesu, and L.-C. Chien, Proc. SPIE 5947, 594706 (2005).
    [CrossRef]

2007 (2)

D. H. Werner, D.-H. Kwon, I.-C. Khoo, A. V. Kildishev, and V. M. Shalaev, Opt. Express 15, 3342 (2007).
[CrossRef] [PubMed]

X. Wang, D.-H. Kwon, D. H. Werner, I.-C. Khoo, A. V. Kildishev, and V. M. Shalaev, Appl. Phys. Lett. 91, 143122 (2007).
[CrossRef]

2006 (5)

2005 (2)

S. Gauza, C.-H. Wen, S.-T. Wu, R. Darbrowski, C.-S. Hsu, C.-O. Catanesu, and L.-C. Chien, Proc. SPIE 5947, 594706 (2005).
[CrossRef]

A. Alù and N. Engheta, Phys. Rev. E 72, 016623 (2005).
[CrossRef]

2002 (1)

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, Phys. Rev. B 65, 195104 (2002).
[CrossRef]

1988 (1)

R. L. Fante and M. T. McCormack, IEEE Trans. Antennas Propag. 36, 1443 (1988).
[CrossRef]

1984 (1)

1972 (2)

J. Ward, Vacuum 22, 369 (1972).
[CrossRef]

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

X. Wang, D.-H. Kwon, D. H. Werner, I.-C. Khoo, A. V. Kildishev, and V. M. Shalaev, Appl. Phys. Lett. 91, 143122 (2007).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

R. L. Fante and M. T. McCormack, IEEE Trans. Antennas Propag. 36, 1443 (1988).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B (2)

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, Phys. Rev. B 65, 195104 (2002).
[CrossRef]

P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[CrossRef]

Phys. Rev. E (2)

A. Alù and N. Engheta, Phys. Rev. E 72, 016623 (2005).
[CrossRef]

X. Zhou and G. Hu, Phys. Rev. E 74, 026607 (2006).
[CrossRef]

Proc. SPIE (1)

S. Gauza, C.-H. Wen, S.-T. Wu, R. Darbrowski, C.-S. Hsu, C.-O. Catanesu, and L.-C. Chien, Proc. SPIE 5947, 594706 (2005).
[CrossRef]

Science (1)

J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006).
[CrossRef] [PubMed]

Vacuum (1)

J. Ward, Vacuum 22, 369 (1972).
[CrossRef]

Other (3)

J. L. Volakis, A. Chatterjee, and L. C. Kempel, Finite Element Method for Electromagnetics (IEEE Press, 1998).
[CrossRef]

R. L. Haupt and D. H. Werner, Genetic Algorithms in Electromagnetics (Wiley, 2007).
[CrossRef]

I.-C. Khoo, Liquid Crystals (Wiley, 2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Unit cell of a doubly periodic optical metamaterial with reconfigurable transparent/reflective properties. (a) Side view from the y-axis direction (same as from the x-axis direction). (b) Three-dimensional view.

Fig. 2
Fig. 2

Three spectra and effective material parameters for the optimized design at two LC director orientations: (a) T, R, and A spectra; (b) n; and (c) z for γ = 0 ° . (d) T, R, and A spectra; (e) n; and (f) z for γ = 90 ° .

Fig. 3
Fig. 3

Three spectra of the optimized design with respect to γ at λ = λ opt for (a) an x ̂ -polarized incident wave and (b) a y ̂ -polarized incident wave.

Tables (1)

Tables Icon

Table 1 Transmittance and Effective Parameter Values of the Optimized Metamaterial Geometry at 1.1 μ m

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ϵ ̿ LC = [ ϵ + Δ ϵ sin 2 γ 0 Δ ϵ cos γ sin γ 0 ϵ 0 Δ ϵ cos γ sin γ 0 ϵ + Δ ϵ cos 2 γ ] ,
f = T ( λ = λ opt , γ = 0 ° ) T ( λ = λ opt , γ = 90 ° ) ,
g = 1 n ( λ , γ = 0 ° ) 1 2 + z ( λ , γ = 0 ° ) 1 2

Metrics