Abstract

We study the second-harmonic generation via transversely matched interaction of two counterpropagating ultrashort pulses in χ(2) photonic structures. We show that the emitted second-harmonic wave attains the form of spatially expanding toroid with the initial thickness given by the cross correlation of the pulses. We demonstrate the formation of such toroidal waves in crystals with random ferroelectric domains as well as in annularly poled nonlinear photonic structures.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. X. Gu, R. Y. Korotkov, Y. J. Ding, J. U. Kang, and J. B. Khurgin, J. Opt. Soc. Am. B 15, 1561 (1998).
    [CrossRef]
  2. G. D. Landry and T. A. Maldonado, J. Opt. Soc. Am. B 21, 1509 (2004).
    [CrossRef]
  3. R. Normandin, R. L. Williams, and F. Chatenoud, Electron. Lett. 26, 2088 (1990).
    [CrossRef]
  4. N. D. Whitbread, J. A. R. Williams, J. S. Roberts, I. Bennion, and P. N. Robson, Opt. Lett. 19, 2089 (1994).
    [CrossRef] [PubMed]
  5. A. Fiore, Y. Beaulieu, S. Janz, J. P. McCaffrey, Z. R. Wasilewski, and D. X. Xu, Appl. Phys. Lett. 70, 2655 (1997).
    [CrossRef]
  6. T. M. Crawford, C. T. Rogers, T. J. Silva, and Y. K. Kim, Appl. Phys. Lett. 68, 1573 (1996).
    [CrossRef]
  7. A. R. Tunyagi, M. Ulex, and K. Betzler, Phys. Rev. Lett. 90, 243901 (2003).
    [CrossRef] [PubMed]
  8. R. Fischer, S. M. Saltiel, D. N. Neshev, W. Krolikowski, and Yu. S. Kivshar, Appl. Phys. Lett. 89, 191105 (2006).
    [CrossRef]
  9. R. Fischer, D. N. Neshev, S. M. Saltiel, A. A. Sukhorukov, W. Krolikowski, and Yu. S. Kivshar, Appl. Phys. Lett. 91, 031104 (2007).
    [CrossRef]
  10. J. Trull, C. Cojocaru, R. Fischer, S. Saltiel, K. Staliunas, R. Herrero, R. Vilaseca, D. N. Neshev, W. Krolikowski, and Yu. Kivshar, Opt. Express 15, 15868 (2007).
    [CrossRef] [PubMed]
  11. J. J. Romero, D. Jaque, J. Garca Solé, and A. A. Kaminskii, Appl. Phys. Lett. 78, 1961 (2001).
    [CrossRef]
  12. D. Kasimov, A. Arie, E. Winebrand, G. Rosenman, A. Bruner, P. Shaier, and D. Eger, Opt. Express 14, 9371 (2006).
    [CrossRef] [PubMed]
  13. J. J. Romero, C. Arago, J. A. Gonzalo, D. Jaque, and J. Garcia Solé, J. Appl. Phys. 93, 3111 (2003).
    [CrossRef]
  14. S. M. Saltiel, D. N. Neshev, R. Fischer, W. Krolikowski, A. Arie, and Yu. S. Kivshar, arXiv.org e-print archive (August 25, 2007), http://arxiv.org/abs/0708.3417v1.
  15. F. Charra and G. G. Gurzadyan, in Nonlinear Dielectric Susceptibilities, D.F.Nelson, ed. (Springer, 2000).

2007

R. Fischer, D. N. Neshev, S. M. Saltiel, A. A. Sukhorukov, W. Krolikowski, and Yu. S. Kivshar, Appl. Phys. Lett. 91, 031104 (2007).
[CrossRef]

J. Trull, C. Cojocaru, R. Fischer, S. Saltiel, K. Staliunas, R. Herrero, R. Vilaseca, D. N. Neshev, W. Krolikowski, and Yu. Kivshar, Opt. Express 15, 15868 (2007).
[CrossRef] [PubMed]

2006

R. Fischer, S. M. Saltiel, D. N. Neshev, W. Krolikowski, and Yu. S. Kivshar, Appl. Phys. Lett. 89, 191105 (2006).
[CrossRef]

D. Kasimov, A. Arie, E. Winebrand, G. Rosenman, A. Bruner, P. Shaier, and D. Eger, Opt. Express 14, 9371 (2006).
[CrossRef] [PubMed]

2004

2003

J. J. Romero, C. Arago, J. A. Gonzalo, D. Jaque, and J. Garcia Solé, J. Appl. Phys. 93, 3111 (2003).
[CrossRef]

A. R. Tunyagi, M. Ulex, and K. Betzler, Phys. Rev. Lett. 90, 243901 (2003).
[CrossRef] [PubMed]

2001

J. J. Romero, D. Jaque, J. Garca Solé, and A. A. Kaminskii, Appl. Phys. Lett. 78, 1961 (2001).
[CrossRef]

1998

1997

A. Fiore, Y. Beaulieu, S. Janz, J. P. McCaffrey, Z. R. Wasilewski, and D. X. Xu, Appl. Phys. Lett. 70, 2655 (1997).
[CrossRef]

1996

T. M. Crawford, C. T. Rogers, T. J. Silva, and Y. K. Kim, Appl. Phys. Lett. 68, 1573 (1996).
[CrossRef]

1994

1990

R. Normandin, R. L. Williams, and F. Chatenoud, Electron. Lett. 26, 2088 (1990).
[CrossRef]

Appl. Phys. Lett.

R. Fischer, S. M. Saltiel, D. N. Neshev, W. Krolikowski, and Yu. S. Kivshar, Appl. Phys. Lett. 89, 191105 (2006).
[CrossRef]

R. Fischer, D. N. Neshev, S. M. Saltiel, A. A. Sukhorukov, W. Krolikowski, and Yu. S. Kivshar, Appl. Phys. Lett. 91, 031104 (2007).
[CrossRef]

J. J. Romero, D. Jaque, J. Garca Solé, and A. A. Kaminskii, Appl. Phys. Lett. 78, 1961 (2001).
[CrossRef]

A. Fiore, Y. Beaulieu, S. Janz, J. P. McCaffrey, Z. R. Wasilewski, and D. X. Xu, Appl. Phys. Lett. 70, 2655 (1997).
[CrossRef]

T. M. Crawford, C. T. Rogers, T. J. Silva, and Y. K. Kim, Appl. Phys. Lett. 68, 1573 (1996).
[CrossRef]

Electron. Lett.

R. Normandin, R. L. Williams, and F. Chatenoud, Electron. Lett. 26, 2088 (1990).
[CrossRef]

J. Appl. Phys.

J. J. Romero, C. Arago, J. A. Gonzalo, D. Jaque, and J. Garcia Solé, J. Appl. Phys. 93, 3111 (2003).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

A. R. Tunyagi, M. Ulex, and K. Betzler, Phys. Rev. Lett. 90, 243901 (2003).
[CrossRef] [PubMed]

Other

S. M. Saltiel, D. N. Neshev, R. Fischer, W. Krolikowski, A. Arie, and Yu. S. Kivshar, arXiv.org e-print archive (August 25, 2007), http://arxiv.org/abs/0708.3417v1.

F. Charra and G. G. Gurzadyan, in Nonlinear Dielectric Susceptibilities, D.F.Nelson, ed. (Springer, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Generation of SH T-waves with two counterpropagating beams. Inset, phase-matching diagram. (b) Theoretically determined emission diagram in polar coordinates ( I 2 , α ) of a T-wave: dashed curve, phase-matched OO-E interactions (in SLT and SBN); dashed–dotted and solid curves, OO-O interaction (in SLT only) for both input polarizations either parallel along x or y (solid) or mutually perpendicular along x and y directions (dashed–dotted). (c) SH signal (emitted from SBN) as seen on the rectangular screen around the crystal. The two outer traces are the conical waves, and the weaker central line represents the T-wave. (d) Domain structure in as-grown SBN sample [11]. (e) Experimental image of a T-wave (central trace) and conical waves generated in the SLT sample. (f) Photo of the annular periodic domain pattern in SLT.

Fig. 2
Fig. 2

Polarization characteristics of SHG in (a) SBN and (b, c) SLT: (a) intensity of the SH signal as a function of the input polarization angle γ 1 for three values of γ 2 , (b) total SH signal in the SLT sample as a function of the input polarization angle γ 1 for indicated values of γ 2 , (c) intensity of the SH signal generated in the SLT sample as a function of the angle ( δ ) of an analyzer mounted in front of the CCD camera. In all plots solid curves represent the theoretical fits.

Metrics