Abstract

We have demonstrated near-wavelength resolution microscopy in the extreme ultraviolet. Images of 50nm diameter nanotubes were obtained with a single 1ns duration pulse from a desktop-size 46.9nm laser. We measured the modulation transfer function of the microscope for three different numerical aperture zone plate objectives, demonstrating that 54nm half-period structures can be resolved. The combination of near-wavelength spatial resolution and high temporal resolution opens myriad opportunities in imaging, such as the ability to directly investigate dynamics of nanoscale structures.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. Y. Garini, B. J. Vermolen, and I. T. Young, Curr. Opin. Biotechnol. 16, 3 (2005).
    [CrossRef] [PubMed]
  2. W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, and D. T. Attwood, Nature 435, 1210 (2005).
    [CrossRef] [PubMed]
  3. D. S. DiCicco, D. Kim, R. Rosser, and S. Suckewer, Opt. Lett. 17, 157 (1992).
    [CrossRef] [PubMed]
  4. L. B. Da Silva, J. E. Trebes, R. Balhorn, S. Mrowka, E. Anderson, D. T. Attwood, T. W. J. Barbee, J. Brase, M. Corzett, J. Gray, J. A. Koch, C. Lee, D. Kern, R. A. London, B. J. MacGowan, D. L. Matthews, and G. Stone, Science 258, 269 (1992).
    [CrossRef] [PubMed]
  5. M. Wieland, C. Spielmann, U. Kleineberg, T. Westerwalbesloh, U. Heinzmann, and T. Wilhein, Ultramicroscopy 102, 93 (2005).
    [CrossRef]
  6. R. L. Sandberg, A. Paul, D. A. Raymondson, S. Hädrich, D. M. Gaudiosi, J. Holtsnider, R. I. Tobey, O. Cohen, M. M. Murnane, H. C. Kapteyn, C. Song, J. Miao, Y. Liu, and F. Salmassi, Phys. Rev. Lett. 99, 098103 (2007).
    [CrossRef] [PubMed]
  7. P. A. C. Takman, H. Stollberg, G. A. Johansson, A. Holmberg, M. Lindblom, and H. M. Hertz, J. Microsc. 226, 175 (2007).
    [CrossRef] [PubMed]
  8. M. Kishimoto, M. Tanaka, R. Tai, K. Sukegawa, M. Kado, N. Hasegawa, H. Tang, T. Kawachi, P. Lu, K. Nagashima, H. Daido, Y. Kato, K. Nagai, and H. Takenaka, J. Phys. IV 104, 141 (2003).
  9. G. Vaschenko, F. Brizuela, C. Brewer, M. Grisham, H. Mancini, C. S. Menoni, M. C. Marconi, J. J. Rocca, W. Chao, J. A. Liddle, E. H. Anderson, D. T. Attwood, A. V. Vinogradov, I. A. Artioukov, Y. P. Pershyn, and V. V. Kondratenko, Opt. Lett. 30, 2095 (2005).
    [CrossRef] [PubMed]
  10. F. Brizuela, G. Vaschenko, C. Brewer, M. Grisham, C. S. Menoni, M. C. Marconi, J. J. Rocca, W. Chao, J. A. Liddle, E. H. Anderson, D. T. Attwood, A. V. Vinogradov, I. A. Artioukov, Y. P. Pershyn, and V. V. Kondratenko, Opt. Express 13, 3983 (2005).
    [CrossRef] [PubMed]
  11. G. Vaschenko, C. Brewer, E. Brizuela, Y. Wang, M. A. Larotonda, B. M. Luther, M. C. Marconi, J. J. Rocca, and C. S. Menoni, Opt. Lett. 31, 1214 (2006).
    [CrossRef] [PubMed]
  12. S. Heinbuch, M. Grisham, D. Martz, and J. J. Rocca, Opt. Express 13, 4050 (2005).
    [CrossRef] [PubMed]
  13. E. H. Anderson, IEEE J. Quantum Electron. 42, 27 (2006).
    [CrossRef]
  14. D. T. Attwood, Soft X-Rays and Extreme Ultraviolet Radiation: Principles and Applications (Cambridge U. Press, 2000).
  15. J. M. Heck, D. T. Attwood, W. Meyer-Ilse, and E. H. Anderson, J. X-Ray Sci. Technol. 8, 95 (1998).
  16. J. J. Rocca, Y. Wang, M. A. Larotonda, B. M. Luther, M. Berrill, and D. Alessi, Opt. Lett. 30, 2581 (2005).
    [CrossRef] [PubMed]

2007 (2)

R. L. Sandberg, A. Paul, D. A. Raymondson, S. Hädrich, D. M. Gaudiosi, J. Holtsnider, R. I. Tobey, O. Cohen, M. M. Murnane, H. C. Kapteyn, C. Song, J. Miao, Y. Liu, and F. Salmassi, Phys. Rev. Lett. 99, 098103 (2007).
[CrossRef] [PubMed]

P. A. C. Takman, H. Stollberg, G. A. Johansson, A. Holmberg, M. Lindblom, and H. M. Hertz, J. Microsc. 226, 175 (2007).
[CrossRef] [PubMed]

2006 (2)

2005 (7)

2003 (1)

M. Kishimoto, M. Tanaka, R. Tai, K. Sukegawa, M. Kado, N. Hasegawa, H. Tang, T. Kawachi, P. Lu, K. Nagashima, H. Daido, Y. Kato, K. Nagai, and H. Takenaka, J. Phys. IV 104, 141 (2003).

1998 (1)

J. M. Heck, D. T. Attwood, W. Meyer-Ilse, and E. H. Anderson, J. X-Ray Sci. Technol. 8, 95 (1998).

1992 (2)

D. S. DiCicco, D. Kim, R. Rosser, and S. Suckewer, Opt. Lett. 17, 157 (1992).
[CrossRef] [PubMed]

L. B. Da Silva, J. E. Trebes, R. Balhorn, S. Mrowka, E. Anderson, D. T. Attwood, T. W. J. Barbee, J. Brase, M. Corzett, J. Gray, J. A. Koch, C. Lee, D. Kern, R. A. London, B. J. MacGowan, D. L. Matthews, and G. Stone, Science 258, 269 (1992).
[CrossRef] [PubMed]

Curr. Opin. Biotechnol. (1)

Y. Garini, B. J. Vermolen, and I. T. Young, Curr. Opin. Biotechnol. 16, 3 (2005).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

E. H. Anderson, IEEE J. Quantum Electron. 42, 27 (2006).
[CrossRef]

J. Microsc. (1)

P. A. C. Takman, H. Stollberg, G. A. Johansson, A. Holmberg, M. Lindblom, and H. M. Hertz, J. Microsc. 226, 175 (2007).
[CrossRef] [PubMed]

J. Phys. IV (1)

M. Kishimoto, M. Tanaka, R. Tai, K. Sukegawa, M. Kado, N. Hasegawa, H. Tang, T. Kawachi, P. Lu, K. Nagashima, H. Daido, Y. Kato, K. Nagai, and H. Takenaka, J. Phys. IV 104, 141 (2003).

J. X-Ray Sci. Technol. (1)

J. M. Heck, D. T. Attwood, W. Meyer-Ilse, and E. H. Anderson, J. X-Ray Sci. Technol. 8, 95 (1998).

Nature (1)

W. Chao, B. D. Harteneck, J. A. Liddle, E. H. Anderson, and D. T. Attwood, Nature 435, 1210 (2005).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

R. L. Sandberg, A. Paul, D. A. Raymondson, S. Hädrich, D. M. Gaudiosi, J. Holtsnider, R. I. Tobey, O. Cohen, M. M. Murnane, H. C. Kapteyn, C. Song, J. Miao, Y. Liu, and F. Salmassi, Phys. Rev. Lett. 99, 098103 (2007).
[CrossRef] [PubMed]

Science (1)

L. B. Da Silva, J. E. Trebes, R. Balhorn, S. Mrowka, E. Anderson, D. T. Attwood, T. W. J. Barbee, J. Brase, M. Corzett, J. Gray, J. A. Koch, C. Lee, D. Kern, R. A. London, B. J. MacGowan, D. L. Matthews, and G. Stone, Science 258, 269 (1992).
[CrossRef] [PubMed]

Ultramicroscopy (1)

M. Wieland, C. Spielmann, U. Kleineberg, T. Westerwalbesloh, U. Heinzmann, and T. Wilhein, Ultramicroscopy 102, 93 (2005).
[CrossRef]

Other (1)

D. T. Attwood, Soft X-Rays and Extreme Ultraviolet Radiation: Principles and Applications (Cambridge U. Press, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the compact 46.9 nm wavelength microscope.

Fig. 2
Fig. 2

Single-shot EUV images of (a) a 70 nm half-period grating and (b) its corresponding lineout with an 83% intensity modulation, and (c) a 54 nm half-period grating with (d) an intensity lineout showing an average modulation of 33%. The EUV images were acquired using a zone plate objective having an outer zone width of Δ r = 73 nm ( NA = 0.32 ) . SEM images of portions of the gratings are displayed in the lower corner of the EUV images.

Fig. 3
Fig. 3

Measured MTFs for objective zone plates with outer zone widths of Δ r = 200 , 124, and 73 nm ( NA = 0.12 , 0.19, and 0.32, respectively). The intensity modulation transfer is graphed as a function of the half-period of the grating sample and the spatial frequency, the inverse of the spatial period. The modulation transfer values were obtained by averaging multiple intensity lineouts within an image, and the curves were added to guide the eye. For the Δ r = 200 , 124, and 73 nm zone plates, Rayleigh-like resolution values of 120, 80, and 54 nm , respectively, were measured.

Fig. 4
Fig. 4

Single-shot image of an entanglement of 50 nm diameter carbon nanotubes. This image was obtained using the Δ r = 73 nm objective lens and a wavelength of 46.9 nm . Features such as nanotube bifurcations are visible.

Metrics