Abstract

The angular distribution of radiation emitted from organic electroluminescent diodes fabricated on substrates with wavelength-scale gratings was measured using an optical Fourier transform instrument. A simple geometrical model is derived that specifies the polar angle of the exiting photon as a function of the azimuth angle, the grating pitch, the wavelength of light, and the effective index of the refraction of the light emitted by the fluorescing excitons. The radiation pattern of the extracted light is shown to fit that predicted by the model if one assumes that it comes from surface plasmon polaritons and bound TE waveguide modes.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. R. W. Gruhlke, W. R. Holland, and D. G. Hall, Phys. Rev. Lett. 56, 2838 (1986).
    [CrossRef] [PubMed]
  2. R. W. Gruhlke, W. R. Holland, and D. G. Hall, Opt. Lett. 12, 364 (1987).
    [CrossRef] [PubMed]
  3. R. W. Gruhlke and D. G. Hall, Appl. Phys. Lett. 53, 1041 (1988).
    [CrossRef]
  4. D. K. Gifford and D. G. Hall, Appl. Phys. Lett. 80, 3679 (2002).
    [CrossRef]
  5. D. K. Gifford and D. G. Hall, Appl. Phys. Lett. 81, 4315 (2002).
    [CrossRef]
  6. L. H. Smith, J. A. E. Wasey, and W. L. Barnes, Appl. Phys. Lett. 84, 2986 (2004).
    [CrossRef]
  7. S. Wedge, J. A. E. Wasey, W. L. Barnes, and I. Sage, Appl. Phys. Lett. 85, 182 (2004).
    [CrossRef]
  8. S. Wedge, I. R. Hooper, I. Sage, and W. L. Barnes, Phys. Rev. B 69, 245418 (2004).
    [CrossRef]
  9. J. Feng, T. Okamato, and S. Kawata, Appl. Phys. Lett. 87, 241109 (2005).
    [CrossRef]
  10. T. Leroux, J. N. Curt, and P. Boher, America's Display Engineering and Applications Conference 2004, Fort Worth, Texas, paper P-5.
  11. J. F. Revelli, L. W. Tutt, and B. E. Kruschwitz, Appl. Opt. 44, 3224 (2005).
    [CrossRef] [PubMed]
  12. Sample 1 layers in micrometers: /glass/0.1Ag/0.002 MoO3/0.230 NPB/0.03NPB: 0.00075 YD3/0.0368 BH3: 0.0028 NPB: 0.0004 TBP/0.010 ALQ/0.027 Mg: 0.003 Ag/. Sample 2 layers: /glass/0.1 Ag/0.001 CFx/0.16 NPB/0.02 ALQ: 0.0002 C545T/0.02 ALQ/0.036 Mg: 0.004 Ag/. Sample 3 layers: /glass/0.1 Ag/0.001 MoO3/0.26 NPB/0.020 ALQ/0.027 Mg: 0.003 Ag/. CFx: plasma deposited perfluorcarbon polymer. TBP: 2,5,8,11-tetra-t-butylperylene. C545T: 10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H,5H,11H-[1] benzopyrano [6,7,8-ij]quinolizin-11-one. BH3 and YD3 are available from Eastman Kodak Company, Rochester, NY.

2005 (2)

J. Feng, T. Okamato, and S. Kawata, Appl. Phys. Lett. 87, 241109 (2005).
[CrossRef]

J. F. Revelli, L. W. Tutt, and B. E. Kruschwitz, Appl. Opt. 44, 3224 (2005).
[CrossRef] [PubMed]

2004 (3)

L. H. Smith, J. A. E. Wasey, and W. L. Barnes, Appl. Phys. Lett. 84, 2986 (2004).
[CrossRef]

S. Wedge, J. A. E. Wasey, W. L. Barnes, and I. Sage, Appl. Phys. Lett. 85, 182 (2004).
[CrossRef]

S. Wedge, I. R. Hooper, I. Sage, and W. L. Barnes, Phys. Rev. B 69, 245418 (2004).
[CrossRef]

2002 (2)

D. K. Gifford and D. G. Hall, Appl. Phys. Lett. 80, 3679 (2002).
[CrossRef]

D. K. Gifford and D. G. Hall, Appl. Phys. Lett. 81, 4315 (2002).
[CrossRef]

1988 (1)

R. W. Gruhlke and D. G. Hall, Appl. Phys. Lett. 53, 1041 (1988).
[CrossRef]

1987 (1)

1986 (1)

R. W. Gruhlke, W. R. Holland, and D. G. Hall, Phys. Rev. Lett. 56, 2838 (1986).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (6)

R. W. Gruhlke and D. G. Hall, Appl. Phys. Lett. 53, 1041 (1988).
[CrossRef]

D. K. Gifford and D. G. Hall, Appl. Phys. Lett. 80, 3679 (2002).
[CrossRef]

D. K. Gifford and D. G. Hall, Appl. Phys. Lett. 81, 4315 (2002).
[CrossRef]

L. H. Smith, J. A. E. Wasey, and W. L. Barnes, Appl. Phys. Lett. 84, 2986 (2004).
[CrossRef]

S. Wedge, J. A. E. Wasey, W. L. Barnes, and I. Sage, Appl. Phys. Lett. 85, 182 (2004).
[CrossRef]

J. Feng, T. Okamato, and S. Kawata, Appl. Phys. Lett. 87, 241109 (2005).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (1)

S. Wedge, I. R. Hooper, I. Sage, and W. L. Barnes, Phys. Rev. B 69, 245418 (2004).
[CrossRef]

Phys. Rev. Lett. (1)

R. W. Gruhlke, W. R. Holland, and D. G. Hall, Phys. Rev. Lett. 56, 2838 (1986).
[CrossRef] [PubMed]

Other (2)

Sample 1 layers in micrometers: /glass/0.1Ag/0.002 MoO3/0.230 NPB/0.03NPB: 0.00075 YD3/0.0368 BH3: 0.0028 NPB: 0.0004 TBP/0.010 ALQ/0.027 Mg: 0.003 Ag/. Sample 2 layers: /glass/0.1 Ag/0.001 CFx/0.16 NPB/0.02 ALQ: 0.0002 C545T/0.02 ALQ/0.036 Mg: 0.004 Ag/. Sample 3 layers: /glass/0.1 Ag/0.001 MoO3/0.26 NPB/0.020 ALQ/0.027 Mg: 0.003 Ag/. CFx: plasma deposited perfluorcarbon polymer. TBP: 2,5,8,11-tetra-t-butylperylene. C545T: 10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H,5H,11H-[1] benzopyrano [6,7,8-ij]quinolizin-11-one. BH3 and YD3 are available from Eastman Kodak Company, Rochester, NY.

T. Leroux, J. N. Curt, and P. Boher, America's Display Engineering and Applications Conference 2004, Fort Worth, Texas, paper P-5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Definition of variables used to analyze the distribution of emission from OLED samples.

Fig. 2
Fig. 2

Schematic of the layer structure of OLED samples fabricated on glass substrates with photoresist gratings.

Fig. 3
Fig. 3

Color and relative intensity versus polar and azimuthal angle of OLED sample 1.

Fig. 4
Fig. 4

L * maps of OLED samples: (a) sample 2 with no polarizer, (b) sample 2 with polarizer parallel to the x axis, (c) sample 2 with polarizer parallel to the y axis, and (d) sample 3 with no polarizer. The black circles are plots of Eq. (3) for SPP modes, and the black plus signs are for the bound TE mode (grating K vector along the x axis). The blue circles show a plot of Eq. (3) for the SPP mode with the grating K vector along the y axis.

Tables (1)

Tables Icon

Table 1 Thickness of Layers (in Micrometers) for Each OLED Device

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

k wg = k proj ± K .
k wg 2 = K 2 + k proj 2 ± 2 K k proj cos ( π ϕ ) .
sin θ = ± λ Λ cos ϕ + n eff 2 ( λ Λ sin ϕ ) 2 .

Metrics