Abstract

We report experimental results on heterodyne holographic microscopy of subwavelength-size gold particles. The apparatus uses continuous green-laser illumination of the metal beads in a total internal reflection configuration for dark-field operation. Detection of the scattered light at the illumination wavelength on a charge-coupled-device array detector enables 3D localization of brownian particles in water.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, Proc. Natl. Acad. Sci. USA 97, 996 (2000).
    [CrossRef] [PubMed]
  2. C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, Appl. Phys. Lett. 77, 2949 (2000).
    [CrossRef]
  3. D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, Science 297, 1160 (2002).
    [CrossRef] [PubMed]
  4. K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, Phys. Rev. Lett. 93, 037401 (2004).
    [CrossRef] [PubMed]
  5. M. A. van Dijk, M. Lippitz, and M. Orrit, Phys. Rev. Lett. 95, 267406 (2005).
    [CrossRef]
  6. F. V. Ignatovich and L. Novotny, Phys. Rev. Lett. 96, 013901 (2006).
    [CrossRef] [PubMed]
  7. V. Jacobsen, P. Stoller, C. Brunner, V. Vogel, and V. Sandoghdar, Opt. Express 14, 405 (2006).
    [CrossRef] [PubMed]
  8. J. S. Batchelder and M. A. Taubenblatt, Appl. Phys. Lett. 55, 215 (1989).
    [CrossRef]
  9. J. Hwang and W. E. Moerner, Opt. Commun. 280, 487 (2007).
    [CrossRef]
  10. S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, Phys. Rev. B 73, 045424 (2006).
    [CrossRef]
  11. M. Atlan, M. Gross, and E. Absil, Opt. Lett. 32, 1456 (2007).
    [CrossRef] [PubMed]
  12. M. Gross and M. Atlan, Opt. Lett. 32, 909 (2007).
    [CrossRef] [PubMed]
  13. W. Lukosz and R. E. Kunz, J. Opt. Soc. Am. 71, 744 (1981)
    [CrossRef]
  14. M. Speidel, A. Jon, and E. L. Florin, Opt. Lett. 28, 69 (2003).
    [CrossRef] [PubMed]
  15. D. Patra, I. Gregor, J. Enderlein, and M. Sauer, Appl. Phys. Lett. 87, 101103 (2005).
    [CrossRef]
  16. J. Mertz, J. Opt. Soc. Am. B 17, 1906 (2000).
    [CrossRef]
  17. http://omlc.ogi.edu/calc/mie-calc.html.
  18. X. Brokmann, E. Giacobino, M. Dahan, and J. P. Hermier, Appl. Phys. Lett. 85, 712 (2004).
    [CrossRef]

2007 (3)

2006 (3)

V. Jacobsen, P. Stoller, C. Brunner, V. Vogel, and V. Sandoghdar, Opt. Express 14, 405 (2006).
[CrossRef] [PubMed]

F. V. Ignatovich and L. Novotny, Phys. Rev. Lett. 96, 013901 (2006).
[CrossRef] [PubMed]

S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, Phys. Rev. B 73, 045424 (2006).
[CrossRef]

2005 (2)

D. Patra, I. Gregor, J. Enderlein, and M. Sauer, Appl. Phys. Lett. 87, 101103 (2005).
[CrossRef]

M. A. van Dijk, M. Lippitz, and M. Orrit, Phys. Rev. Lett. 95, 267406 (2005).
[CrossRef]

2004 (2)

X. Brokmann, E. Giacobino, M. Dahan, and J. P. Hermier, Appl. Phys. Lett. 85, 712 (2004).
[CrossRef]

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, Phys. Rev. Lett. 93, 037401 (2004).
[CrossRef] [PubMed]

2003 (1)

2002 (1)

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, Science 297, 1160 (2002).
[CrossRef] [PubMed]

2000 (3)

S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, Proc. Natl. Acad. Sci. USA 97, 996 (2000).
[CrossRef] [PubMed]

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, Appl. Phys. Lett. 77, 2949 (2000).
[CrossRef]

J. Mertz, J. Opt. Soc. Am. B 17, 1906 (2000).
[CrossRef]

1989 (1)

J. S. Batchelder and M. A. Taubenblatt, Appl. Phys. Lett. 55, 215 (1989).
[CrossRef]

1981 (1)

Appl. Phys. Lett. (4)

C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z.-H. Chan, J. P. Spatz, and M. Möller, Appl. Phys. Lett. 77, 2949 (2000).
[CrossRef]

J. S. Batchelder and M. A. Taubenblatt, Appl. Phys. Lett. 55, 215 (1989).
[CrossRef]

D. Patra, I. Gregor, J. Enderlein, and M. Sauer, Appl. Phys. Lett. 87, 101103 (2005).
[CrossRef]

X. Brokmann, E. Giacobino, M. Dahan, and J. P. Hermier, Appl. Phys. Lett. 85, 712 (2004).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

J. Hwang and W. E. Moerner, Opt. Commun. 280, 487 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. B (1)

S. Berciaud, D. Lasne, G. A. Blab, L. Cognet, and B. Lounis, Phys. Rev. B 73, 045424 (2006).
[CrossRef]

Phys. Rev. Lett. (3)

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, Phys. Rev. Lett. 93, 037401 (2004).
[CrossRef] [PubMed]

M. A. van Dijk, M. Lippitz, and M. Orrit, Phys. Rev. Lett. 95, 267406 (2005).
[CrossRef]

F. V. Ignatovich and L. Novotny, Phys. Rev. Lett. 96, 013901 (2006).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, Proc. Natl. Acad. Sci. USA 97, 996 (2000).
[CrossRef] [PubMed]

Science (1)

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, Science 297, 1160 (2002).
[CrossRef] [PubMed]

Other (1)

http://omlc.ogi.edu/calc/mie-calc.html.

Supplementary Material (1)

» Media 1: AVI (1795 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Experimental setup. (b) Evanescent wave illumination of static beads in a plane. (c) Total internal reflection configuration for dark-field illumination of beads in a tridimensional environment. Acronyms defined in the text.

Fig. 2
Fig. 2

Squared amplitude holograms E 2 in logarithmic arbitrary units. (a) 200 nm beads, (b) 100 nm beads, and (c) 50 nm beads. Scale bar is 10 μ m . Horizontal profile traces of E 2 at the beads positions, averaged over 4 pixels [(d)–(f)], in linear arbitrary units.

Fig. 3
Fig. 3

E 2 reconstructed images of a 200 nm gold bead with experimental setup of Fig. 1b at several axial positions: (a) z = 22 μ m , (b) z = 17 μ m , (c) z = 0 μ m , displayed in logarithmic arbitrary units. Scale bar is 5 μ m . Transverse plane profile traces of E 2 at the beads positions, averaged over 3 pixels are shown in (d)–(f), in linear arbitrary units. Axial plane distribution (g) and linear scale profile averaged over 10 pixels in the lateral direction (h) are also shown.

Fig. 4
Fig. 4

Intensity images calculated from 4 × 2 camera frames data of a pair of 200 nm particles. (a)–(e) Direct image (LO beam is off), (k)–(o) holography (LO beam is on). Scale bar is 5 μ m . Illumination field power attenuation ranges from 10 0 to 10 4 . Bead profiles without [(f)–(j)], and with [(p) to (t)] LO beam. The vertical axis range (A.U.) is the same for (f)–(j) and for (p)–(t).

Fig. 5
Fig. 5

(Multimedia online) Axial exploration of a 200 nm gold beads suspension in water. (a)–(d) E 2 images reconstructed 10 μ m apart. (e)–(h) Linear scale profiles averaged over 4 pixels, (i) composite image; scale bar is 5 μ m .

Metrics