Abstract

All-optical control of the phase-matching condition in four-wave mixing (FWM) processes is demonstrated using the Brillouin slow-light effect in optical fibers. A counterpropagating stimulated Brillouin scattering (SBS) pump has been used to control the phase velocity of the FWM pump in a wavelength conversion scheme. Both experimetal results and theoretical simulations show an SBS-controlled 20dB difference on the wavelength conversion efficiency.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, Phys. Rev. Lett. 94, 153902 (2005).
    [CrossRef] [PubMed]
  2. M. G. Herraez, K. Y. Song, and L. Thevenaz, Opt. Express 14, 1395 (2006).
    [CrossRef]
  3. B. Zhang, L. Zhang, L. S. Yan, I. Fazal, J. Y. Yang, and A. E. Willner, Opt. Express 15, 8117 (2007).
  4. A. S. Y. Hsieh, G. K. L. Wong, G. Murdoch, S. Coen, F. Vanholsbeeck, R. Leonhardt, and J. D. Harvey, Opt. Express 15, 8104 (2007).
    [CrossRef] [PubMed]
  5. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, IEEE J. Quantum Electron. 8, 506 (2002).
    [CrossRef]

2007 (2)

B. Zhang, L. Zhang, L. S. Yan, I. Fazal, J. Y. Yang, and A. E. Willner, Opt. Express 15, 8117 (2007).

A. S. Y. Hsieh, G. K. L. Wong, G. Murdoch, S. Coen, F. Vanholsbeeck, R. Leonhardt, and J. D. Harvey, Opt. Express 15, 8104 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (1)

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

2002 (1)

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, IEEE J. Quantum Electron. 8, 506 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. Hedekvist, IEEE J. Quantum Electron. 8, 506 (2002).
[CrossRef]

Opt. Express (3)

Phys. Rev. Lett. (1)

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for the SBS phase-matching control in a WC scheme. TLS, tunable laser source; PC, polarization controller; AM, amplitude modulator; FBG, fiber Bragg grating; TBF, tunable bandpass filter; OSA, optical spectrum analyzer.

Fig. 2
Fig. 2

(a) Idler spectrum with P p = 7.60 dBm and P s = 5.97 dBm ; experiment (solid curve) and theory (dashed curve). (b) Normalized Brillouin spectrum; experiment (circles) and theory, where the solid curve corresponds to Re ( g b ) and the dashed curve to Im ( g b ) .

Fig. 3
Fig. 3

Idler power ratio as a function of the FWM pump detuning from the SBS resonance; λ p = 1556.0 nm and λ i = 1559.0 nm ; experiment (asterisks) and theory (solid curve).

Fig. 4
Fig. 4

(a) Theoretical idler ratio with Im ( g b ) = 0 ( λ p = 1556.0 , λ i = 1559.0 nm ), and (b) idler ratio with Re ( g b ) = 0 (left axis) and phase mismatch parameter (right axis).

Fig. 5
Fig. 5

Idler power ratio as a function of the FWM pump detuning from the SBS resonance; λ p = 1552.0 nm and λ i = 1555.0 nm ; experiment (asterisks) and theory (solid curve).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d P p d z = α P p 4 γ ( P s P i ) 1 2 P p sin θ + Re ( g b ) P p P b ,
d P s , i d z = α P s , i + 2 γ ( P s P i ) 1 2 P p sin θ ,
d P b d z = α P b + Re ( g b ) P b P p ,
d θ d z = Δ β + γ ( 2 P p P s P i ) + γ ( P i P s ) 1 2 ( P p P s + P p P i 4 ) cos θ + Im ( g b ) P b .
κ = Δ β + 2 γ P ¯ p Im [ g b ( δ ) ] P ¯ b ,

Metrics