Abstract

An intensity-modulated, fiber Bragg grating (FBG) sensor system based on radio-frequency (RF) signal measurement is presented. The RF signal is generated at a photodetector by two modulated optical signals reflected from the sensing FBG and a reference FBG. Wavelength shift of the sensing FBG changes intensity of the RF signal through changing the delay between the two optical signals, with temperature effect being compensated automatically by the reference FBG. It also exhibits important features including potentially high-speed measurement, low cost, and adjustable sensitivity. In the experiment, strain measurement with a maximum sensitivity of 0.34μVμε has been achieved.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, and R. G. May, J. Lightwave Technol. 19, 1495 (2001).
    [CrossRef]
  2. S. Abad, M. López-Amo, F. M. Araújo, L. A. Ferreira, and J. L. Santos, Opt. Lett. 27, 222 (2002).
    [CrossRef]
  3. K. O. Lee, K. S. Chiang, and Z. H. Chen, Opt. Eng. 40, 2582 (2001).
    [CrossRef]
  4. S. Kim, S. Kim, J. Kwon, and B. Lee, IEEE Photon. Technol. Lett. 13, 839 (2001).
    [CrossRef]
  5. X. Dong, X. Yang, C.-L. Zhao, L. Ding, P. Shum, and N. Q. Ngo, Smart Mater. Struct. 14, N7 (2005).
    [CrossRef]
  6. X. Dong, C. Zhan, K. Hu, P. Shum, and C. C. Chan, IEEE Photon. Technol. Lett. 17, 2394 (2005).
    [CrossRef]

2005 (2)

X. Dong, X. Yang, C.-L. Zhao, L. Ding, P. Shum, and N. Q. Ngo, Smart Mater. Struct. 14, N7 (2005).
[CrossRef]

X. Dong, C. Zhan, K. Hu, P. Shum, and C. C. Chan, IEEE Photon. Technol. Lett. 17, 2394 (2005).
[CrossRef]

2002 (1)

2001 (3)

K. O. Lee, K. S. Chiang, and Z. H. Chen, Opt. Eng. 40, 2582 (2001).
[CrossRef]

S. Kim, S. Kim, J. Kwon, and B. Lee, IEEE Photon. Technol. Lett. 13, 839 (2001).
[CrossRef]

A. Wang, H. Xiao, J. Wang, Z. Wang, W. Zhao, and R. G. May, J. Lightwave Technol. 19, 1495 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

S. Kim, S. Kim, J. Kwon, and B. Lee, IEEE Photon. Technol. Lett. 13, 839 (2001).
[CrossRef]

X. Dong, C. Zhan, K. Hu, P. Shum, and C. C. Chan, IEEE Photon. Technol. Lett. 17, 2394 (2005).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Eng. (1)

K. O. Lee, K. S. Chiang, and Z. H. Chen, Opt. Eng. 40, 2582 (2001).
[CrossRef]

Opt. Lett. (1)

Smart Mater. Struct. (1)

X. Dong, X. Yang, C.-L. Zhao, L. Ding, P. Shum, and N. Q. Ngo, Smart Mater. Struct. 14, N7 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the proposed FBG sensor. Inset 1 is reflection spectra of the reference and sensing FBGs when different strains were applied. Inset 2 is the measured RF output spectrum at 450 MHz of the sensor system.

Fig. 2
Fig. 2

RF signal power against modulation frequency (curves: calculated results; circles: measured results for Δ λ = 2 nm ).

Fig. 3
Fig. 3

Calculated RF signal power against FBG wavelength separation for different modulation frequencies of 275 to 575 MHz .

Fig. 4
Fig. 4

FBG wavelength shift and RF signal power (data points for measurement results; dashed curves for theoretical results) for strain measurement at different modulation frequencies.

Fig. 5
Fig. 5

Measured RF signal power against temperature.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P r , s = P r , s c [ 1 + m sin ( 2 π f t + φ r , s ) ] ,
P out = P r + P s = 2 P c + P o sin ( 2 π f t + φ o ) ,
P o = 2 m P c [ 1 + cos ( Δ φ ) ] 1 2 ,
Δ φ = 2 π f ( 2 n Δ L c + D L Δ λ ) ,

Metrics