Abstract

We compare frequency-and time-domain formulations of deep-tissue fluorescence imaging of turbid media. Simulations are used to show that time-domain fluorescence tomography, implemented via the asymptotic lifetime-based approach, offers a significantly better separability of multiple lifetime targets than a frequency-domain approach. We also demonstrate experimentally, using complex-shaped phantoms, the advantages of the asymptotic time-domain approach over a Fourier-based approach for analyzing time-domain fluorescence data.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. Wu, L. Perelman, R. R. Dasari, and M. S. Feld, Proc. Natl. Acad. Sci. U.S.A. 94, 8783 (1997).
    [CrossRef] [PubMed]
  2. S. Bloch, F. Lesage, L. Mackintosh, A. Gandjbakche, K. Liang, and S. Achilefu, J. Biomed. Opt. 10, 054003-1 (2005).
    [CrossRef]
  3. A. T. N. Kumar, J. Skoch, B. J. Bacskai, D. A. Boas, and A. K. Dunn, Opt. Lett. 30, 3347 (2005).
    [CrossRef]
  4. A. T. N. Kumar, S. B. Raymond, A. K. Dunn, B. J. Bacskai, and D. A. Boas, "A time domain fluorescence tomography system for small animal imaging," IEEE Trans. Med. Imaging (to be published).
  5. V. Y. Soloviev, J. McGinty, K. B. Tahir, M. A. A. Neil, A. Sardini, J. V. Hajnal, S. R. Arridge, and P. M. W. French, Opt. Lett. 32, 2034 (2007).
    [CrossRef] [PubMed]
  6. M. A. Oleary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, Opt. Lett. 21, 158 (1996).
    [CrossRef]
  7. A. B. Milstein, J. J. Stott, S. Oh, D. A. Boas, R. P. Millane, C. A. Bouman, and K. J. Webb, J. Opt. Soc. Am. A 21, 1035 (2004).
    [CrossRef]
  8. A. Godavarty, E. M. Sevick-Muraca, and M. J. Eppstein, Med. Phys. 32, 992 (2005).
    [CrossRef] [PubMed]
  9. V. Ntziachristos and R. Weissleder, Opt. Lett. 26, 893 (2001).
    [CrossRef]
  10. E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, Med. Phys. 30, 901 (2003).
    [CrossRef] [PubMed]
  11. R. B. Schultz, J. Ripoll, and V. Ntziachristos, IEEE Trans. Med. Imaging 23, 492 (2004).
    [CrossRef]
  12. A. T. N. Kumar, S. B. Raymond, G. Boverman, D. A. Boas, and B. J. Bacskai, Opt. Express 14, 12255 (2006).
    [CrossRef] [PubMed]
  13. P. I. H. Bastiaens and A. Squire, Trends Cell Biol. 9, 48 (1999).
    [CrossRef] [PubMed]

2007

2006

2005

S. Bloch, F. Lesage, L. Mackintosh, A. Gandjbakche, K. Liang, and S. Achilefu, J. Biomed. Opt. 10, 054003-1 (2005).
[CrossRef]

A. Godavarty, E. M. Sevick-Muraca, and M. J. Eppstein, Med. Phys. 32, 992 (2005).
[CrossRef] [PubMed]

A. T. N. Kumar, J. Skoch, B. J. Bacskai, D. A. Boas, and A. K. Dunn, Opt. Lett. 30, 3347 (2005).
[CrossRef]

2004

2003

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, Med. Phys. 30, 901 (2003).
[CrossRef] [PubMed]

2001

1999

P. I. H. Bastiaens and A. Squire, Trends Cell Biol. 9, 48 (1999).
[CrossRef] [PubMed]

1997

J. Wu, L. Perelman, R. R. Dasari, and M. S. Feld, Proc. Natl. Acad. Sci. U.S.A. 94, 8783 (1997).
[CrossRef] [PubMed]

1996

IEEE Trans. Med. Imaging

R. B. Schultz, J. Ripoll, and V. Ntziachristos, IEEE Trans. Med. Imaging 23, 492 (2004).
[CrossRef]

J. Biomed. Opt.

S. Bloch, F. Lesage, L. Mackintosh, A. Gandjbakche, K. Liang, and S. Achilefu, J. Biomed. Opt. 10, 054003-1 (2005).
[CrossRef]

J. Opt. Soc. Am. A

Med. Phys.

A. Godavarty, E. M. Sevick-Muraca, and M. J. Eppstein, Med. Phys. 32, 992 (2005).
[CrossRef] [PubMed]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, Med. Phys. 30, 901 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Proc. Natl. Acad. Sci. U.S.A.

J. Wu, L. Perelman, R. R. Dasari, and M. S. Feld, Proc. Natl. Acad. Sci. U.S.A. 94, 8783 (1997).
[CrossRef] [PubMed]

Trends Cell Biol.

P. I. H. Bastiaens and A. Squire, Trends Cell Biol. 9, 48 (1999).
[CrossRef] [PubMed]

Other

A. T. N. Kumar, S. B. Raymond, A. K. Dunn, B. J. Bacskai, and D. A. Boas, "A time domain fluorescence tomography system for small animal imaging," IEEE Trans. Med. Imaging (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Comparison of FD and ATD reconstructions with simulated data for laterally located fluorescent targets with lifetimes of 0.5 and 1 ns . (a) Cross-sectional ( x y plane) view of sources (asterisks) and detectors (circles) arranged in a transmission geometry for a 2 cm thick infinite slab. Sources were in the z = 0 cm plane, and detectors were in the z = 2 cm plane. The FD reconstructed η ( r ) and τ ( r ) are shown for 6 mm separated targets in (b) and (c), and for 3 mm separated targets in (f) and (g). The τ ( r ) images are displayed only in the region within 50% of the maximum of η ( r ) . The ATD reconstructed yields are shown in (d) for 6 mm separation and (h) for 3 mm separation. The images in (d) and (h) are displayed by assigning the yield for 0.5 ns to the blue component and that for 1 ns to the red component of a single RGB image. [As a visual aid, the color scales in (c) and (g) are also restricted to a range of 0.5 ns (blue) to 1 ns (red).] (e) and (i) show plots of normalized yield along the x direction at the ( y , z ) location of the maxima of the corresponding η ( r ) ’s. (see legend). The vertical dotted lines indicate the true centroids of the inclusions.

Fig. 2
Fig. 2

Comparison of FD and ATD reconstructions for axial targets. The geometry is the same as in Fig. 1. The FD reconstructed η ( r ) and τ ( r ) are shown for 8 mm separated targets in (a) and (b), and for 4 mm separated targets in (e) and (f). The ATD reconstructed yields are shown in (c) for 8 mm separation and (g) for 4 mm separation. (d) and (h) show the z dependence of the yields at the x y location of the individual maxima. The dotted lines indicate the true centroids of the inclusions. The color scheme is identical to that of Fig. 1.

Fig. 3
Fig. 3

Experimental tomography results from a mouse phantom. (a) Photograph of mouse phantom used, with two inclusions. Inclusion A was filled with an aqueous solution of the fluorophore ( 0.5 ns lifetime), and inclusion B was filled with the fluorophore in 100% glycerol ( 0.95 ns lifetime). (b) ATD reconstructions are shown as 90% isosurfaces (yield for 0.5 ns in blue and yield for 0.95 ns in red) overlayed with the surface boundary of the phantom obtained using a 3D camera system. (c–j) show both the ATD and FD reconstructions along the planar slice (green dots) shown in (b). (c–f) Reconstructions with only B filled with the dye solution in glycerol. (g–j) Reconstructions with both A and B filled with the aqueous and glycerol dye solutions, respectively. (c) and (g) show η ( r ) , and (d) and (h) show τ ( r ) recovered using the 156 Mhz Fourier component of the TD data. (e, i) ATD yield displayed as an RGB image, with blue and red components assigned the yields for 0.5 and 0.95 ns , respectively. All the yields are thresholded at 90% of the maximum. (f) and (j) are the depth ( z ) profiles of all the yields at the ( x , y ) location of the corresponding maximum yield. The color scheme is identical to that of Fig. 1.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

U ̃ ( r s , r d , ω ) = Ω d 3 r G x ( r s , r , ω ) G m ( r d , r , ω ) F ( r , ω ) .
a n ( r d , r s ) = Ω d 3 r G x ( r s , r , i Γ n ) G m ( r d , r , i Γ n ) η n ( r ) .

Metrics