Abstract

The polarization state of light is modulated by an anisotropic thin film. An anisotropic MgF2 film is deposited onto a plate that is put in contact with a BK7 prism to form a BK7 prism/film/air configuration. It is shown that the polarization state of reflected light can be easily modulated from a linear state to a circular state by rotating the thin-film plate.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. E. Hecht, Optics (Addison-Wesley, 2002).
  2. S. Sugano and N. Kojima, Magneto-Optics (Springer-Verlag, 2000).
  3. I. J. Hodgkinson and Q. H. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, 1997).
    [CrossRef]
  4. D. Vick, L. J. Friedricha, S. K. Dewa, M. J. Bretta, K. Robbiea, M. Setoa, and T. Smyb, Thin Solid Films 339, 88 (1999).
    [CrossRef]
  5. K. Robbie, J. C. Sit, and M. J. Brett, J. Vac. Sci. Technol. B 16, 1115 (1998).
    [CrossRef]
  6. J. Q. Xi, J. K. Kim, and E. F. Schubert, Nano Lett. 5, 1385 (2005).
    [CrossRef] [PubMed]
  7. J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, Nat. Photonics 1, 176 (2007).
  8. I. J. Hodgkinson and Q. H. Wu, Appl. Opt. 38, 3621 (1999).
    [CrossRef]
  9. A. C. Van Popta, J. Cheng, J. C. Sit, and M. J. Brett, J. Appl. Phys. 102, 013517 (2007).
    [CrossRef]
  10. Y. J. Jen and C. L. Chiang, Opt. Commun. 265, 446 (2006).
    [CrossRef]
  11. Y. J. Jen, C. Y. Peng, and H. H. Chang, Opt. Express 15, 4445 (2007).
    [CrossRef] [PubMed]
  12. Y. J. Jen and C. Y. Peng, Appl. Phys. Lett. 89, 041128 (2006).
    [CrossRef]
  13. F. Horowitz, Ph.D. dissertation (U. of Arizona, 1983).
  14. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1987).

2007

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, Nat. Photonics 1, 176 (2007).

A. C. Van Popta, J. Cheng, J. C. Sit, and M. J. Brett, J. Appl. Phys. 102, 013517 (2007).
[CrossRef]

Y. J. Jen, C. Y. Peng, and H. H. Chang, Opt. Express 15, 4445 (2007).
[CrossRef] [PubMed]

2006

Y. J. Jen and C. Y. Peng, Appl. Phys. Lett. 89, 041128 (2006).
[CrossRef]

Y. J. Jen and C. L. Chiang, Opt. Commun. 265, 446 (2006).
[CrossRef]

2005

J. Q. Xi, J. K. Kim, and E. F. Schubert, Nano Lett. 5, 1385 (2005).
[CrossRef] [PubMed]

1999

I. J. Hodgkinson and Q. H. Wu, Appl. Opt. 38, 3621 (1999).
[CrossRef]

D. Vick, L. J. Friedricha, S. K. Dewa, M. J. Bretta, K. Robbiea, M. Setoa, and T. Smyb, Thin Solid Films 339, 88 (1999).
[CrossRef]

1998

K. Robbie, J. C. Sit, and M. J. Brett, J. Vac. Sci. Technol. B 16, 1115 (1998).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

Y. J. Jen and C. Y. Peng, Appl. Phys. Lett. 89, 041128 (2006).
[CrossRef]

J. Appl. Phys.

A. C. Van Popta, J. Cheng, J. C. Sit, and M. J. Brett, J. Appl. Phys. 102, 013517 (2007).
[CrossRef]

J. Vac. Sci. Technol. B

K. Robbie, J. C. Sit, and M. J. Brett, J. Vac. Sci. Technol. B 16, 1115 (1998).
[CrossRef]

Nano Lett.

J. Q. Xi, J. K. Kim, and E. F. Schubert, Nano Lett. 5, 1385 (2005).
[CrossRef] [PubMed]

Nat. Photonics

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, and J. A. Smart, Nat. Photonics 1, 176 (2007).

Opt. Commun.

Y. J. Jen and C. L. Chiang, Opt. Commun. 265, 446 (2006).
[CrossRef]

Opt. Express

Thin Solid Films

D. Vick, L. J. Friedricha, S. K. Dewa, M. J. Bretta, K. Robbiea, M. Setoa, and T. Smyb, Thin Solid Films 339, 88 (1999).
[CrossRef]

Other

F. Horowitz, Ph.D. dissertation (U. of Arizona, 1983).

R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1987).

E. Hecht, Optics (Addison-Wesley, 2002).

S. Sugano and N. Kojima, Magneto-Optics (Springer-Verlag, 2000).

I. J. Hodgkinson and Q. H. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, 1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Relationship between the principal axes (1, 2, 3) and the film coordinates with axes (x, y, z).

Fig. 2
Fig. 2

An anisotropic thin film is deposited onto a BK7 plate that is attached to a BK7 prism using index-matching oil. The thin-film plate can be rotated to vary the deposition angle δ that is between the deposition plane and the plane of incidence.

Fig. 3
Fig. 3

Reflectance angular spectra R sp and R ss for various deposition plane angles δ = 0 ° , 30 ° , 60 ° , and 90 ° . The circles are the reflectance at 59.08 ° .

Fig. 4
Fig. 4

Measured ellipticity (squares) and azimuth angle (circles) versus the deposition plane angle at incident angle 59.08 ° for wavelength 632.8 nm . The simulated e and θ p are presented as curves.

Fig. 5
Fig. 5

Measured ellipticity e and azimuth angle θ p spectra for various deposition plane angles δ = 0 ° (lower diamonds), 17 ° (circles), 58 ° (triangles), and 90 ° (upper diamonds). The simulations are presented for δ = 0 ° , 17 ° , 58 ° , and 90 ° .

Fig. 6
Fig. 6

Cross-section SEM image of the two-layered system. The thickness of the isotropic thin film (lower layer) and anisotropic thin film (upper layer) are 303.4 and 1560.8 nm , respectively. The column angle β of the thin film is 39 ° .

Tables (1)

Tables Icon

Table 1 Simulated Optical Conditions for the Measured Ellipticity e and Azimuth Angle θ p Spectra

Metrics