Abstract

Using coupled mode theory it is shown how transverse mode shaping and selection can be performed, including in-phase operation, by engineering of the refractive index and gain. Analytical predictions are confirmed by a detailed numerical model.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. J. Augst, A. K. Goyal, R. L. Aggarwal, T. Y. Fan, and A. Sanchez, Opt. Lett. 28, 331 (2003).
    [CrossRef] [PubMed]
  2. A. Shirakawa, T. Sartou, T. Sekiguchi, and K. Ueda, Opt. Express 10, 1167 (2002).
    [PubMed]
  3. C. J. Corcoran and F. Durville, Appl. Phys. Lett. 86, 201118 (2005).
    [CrossRef]
  4. H. Bruesselbach, D. C. Jones, M. Mangir, M. Minden, and J. Rogers, Opt. Lett. 30, 1339 (2005).
    [CrossRef] [PubMed]
  5. Q. Peng, Y. Zhou, Y. Chen, Z. Sun, Y. Bo, X. Yang, Z. Xu, Y. Wang, K. Li, and W. Zhou, Electron. Lett. 41, 171 (2005).
    [CrossRef]
  6. S. T. Hendow, S. A. Shakir, B. Culver, and B. Nelson, in 20th Annual Solid State and Diode Laser Techology Review, Tech. Dig. (Directed Energy Professional Society, 2007), pp. 34-37.
  7. T. M. Shay, V. Benham, J. T. Baker, B. Ward, A. D. Sanchez, M. A. Culpepper, D. Pilkington, J. Spring, D. J. Nelson, and C. L. Lu, Opt. Express 14, 12015 (2006).
    [CrossRef] [PubMed]
  8. P. K. Cheo, A. Liu, and G. G. King, IEEE Photon. Technol. Lett. 13, 439 (2001).
    [CrossRef]
  9. E. J. Bochove, P. K. Cheo, and G. G. King, Opt. Lett. 28, 1200 (2003).
    [CrossRef] [PubMed]
  10. E. J. Bochove, Proc. SPIE 5708, 132 (2005).
    [CrossRef]
  11. D. V. Vysotsky, N. N. Elkin, A. P. Napartovich, and V. N. Troshchieva, Quantum Electron. 36, 957 (2006).
    [CrossRef]
  12. S. Peles, J. L. Rogers, and K. Wiesenfeld, Phys. Rev. E 73, 026212 (2006).
    [CrossRef]
  13. A. Hardy and W. Streifer, J. Lightwave Technol. 4, 90 (1986).
    [CrossRef]
  14. A. Mafi and J. V. Moloney, IEEE Photon. Technol. Lett. 17, 348 (2005).
    [CrossRef]
  15. K. M. Gundu, M. K. Kolesik, and J. V. Moloney, Opt. Lett. 32, 763 (2007).
    [CrossRef] [PubMed]
  16. Y. Huo and P. K. Cheo, J. Opt. Soc. Am. B 22, 2345 (2005).
    [CrossRef]
  17. J. Salzman, R. Lang, and A. Yariv, Opt. Lett. 10, 387 (1985).
    [CrossRef] [PubMed]

2007 (1)

2006 (3)

D. V. Vysotsky, N. N. Elkin, A. P. Napartovich, and V. N. Troshchieva, Quantum Electron. 36, 957 (2006).
[CrossRef]

S. Peles, J. L. Rogers, and K. Wiesenfeld, Phys. Rev. E 73, 026212 (2006).
[CrossRef]

T. M. Shay, V. Benham, J. T. Baker, B. Ward, A. D. Sanchez, M. A. Culpepper, D. Pilkington, J. Spring, D. J. Nelson, and C. L. Lu, Opt. Express 14, 12015 (2006).
[CrossRef] [PubMed]

2005 (6)

E. J. Bochove, Proc. SPIE 5708, 132 (2005).
[CrossRef]

C. J. Corcoran and F. Durville, Appl. Phys. Lett. 86, 201118 (2005).
[CrossRef]

H. Bruesselbach, D. C. Jones, M. Mangir, M. Minden, and J. Rogers, Opt. Lett. 30, 1339 (2005).
[CrossRef] [PubMed]

Q. Peng, Y. Zhou, Y. Chen, Z. Sun, Y. Bo, X. Yang, Z. Xu, Y. Wang, K. Li, and W. Zhou, Electron. Lett. 41, 171 (2005).
[CrossRef]

Y. Huo and P. K. Cheo, J. Opt. Soc. Am. B 22, 2345 (2005).
[CrossRef]

A. Mafi and J. V. Moloney, IEEE Photon. Technol. Lett. 17, 348 (2005).
[CrossRef]

2003 (2)

2002 (1)

2001 (1)

P. K. Cheo, A. Liu, and G. G. King, IEEE Photon. Technol. Lett. 13, 439 (2001).
[CrossRef]

1986 (1)

A. Hardy and W. Streifer, J. Lightwave Technol. 4, 90 (1986).
[CrossRef]

1985 (1)

Appl. Phys. Lett. (1)

C. J. Corcoran and F. Durville, Appl. Phys. Lett. 86, 201118 (2005).
[CrossRef]

Electron. Lett. (1)

Q. Peng, Y. Zhou, Y. Chen, Z. Sun, Y. Bo, X. Yang, Z. Xu, Y. Wang, K. Li, and W. Zhou, Electron. Lett. 41, 171 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

P. K. Cheo, A. Liu, and G. G. King, IEEE Photon. Technol. Lett. 13, 439 (2001).
[CrossRef]

A. Mafi and J. V. Moloney, IEEE Photon. Technol. Lett. 17, 348 (2005).
[CrossRef]

J. Lightwave Technol. (1)

A. Hardy and W. Streifer, J. Lightwave Technol. 4, 90 (1986).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (2)

Opt. Lett. (5)

Phys. Rev. E (1)

S. Peles, J. L. Rogers, and K. Wiesenfeld, Phys. Rev. E 73, 026212 (2006).
[CrossRef]

Proc. SPIE (1)

E. J. Bochove, Proc. SPIE 5708, 132 (2005).
[CrossRef]

Quantum Electron. (1)

D. V. Vysotsky, N. N. Elkin, A. P. Napartovich, and V. N. Troshchieva, Quantum Electron. 36, 957 (2006).
[CrossRef]

Other (1)

S. T. Hendow, S. A. Shakir, B. Culver, and B. Nelson, in 20th Annual Solid State and Diode Laser Techology Review, Tech. Dig. (Directed Energy Professional Society, 2007), pp. 34-37.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Illustration of multicore fiber geometry for rim-core number N = 6 .

Fig. 2
Fig. 2

Gain of each supermode as function of the difference of central-core index and that of reference fiber in the case that the central-core gain is large compared to that of rim cores. Inset, amplitude ratio of central-core to rim-core field.

Fig. 3
Fig. 3

Dependence of (a) cavity eigenvalues and (b) coherence of primary cavity mode on reflection variation, δ ( r 1 r 2 ) 2 , for a fiber length equal to an integral number of the beat length of supermodes 1 and 2.

Fig. 4
Fig. 4

Coherence as function of length L near a multiple of the beat length, assuming δ = 0.1 .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

K = ( β 1 a a a a a ¯ β 2 b c b a ¯ b β 2 b c a ¯ c b β 2 d a ¯ b c d β 2 ) .
V j = 1 , 2 = { ζ j , 1 , 1 , , 1 } , V j = 3 , , N + 1 = { 0 , U j 2 } ,
g j = ( 2 π λ ) n ( x , y ) Re [ E j x ( x , y ) H j y ( x , y ) * ] d S Re [ E j x ( x , y ) H j y ( x , y ) * ] d S ,
R = [ ( 1 + δ σ s ) r δ ( 1 σ s ) r 0 0 δ ( 1 + σ s ) r ( 1 δ σ s ) r 0 0 0 0 r 2 0 0 0 0 r 2 ] ,
[ ( ρ 1 e 2 i χ 1 L 1 ) ( ρ 2 e 2 i χ 2 L 1 ) K ] j = 3 N + 1 ( r 2 e 2 i χ j L 1 ) = 0 ,

Metrics