Abstract

A change of up to 40% of the relative transmission at the photonic bandgap edge has been observed in photoconductive inverted ZnO opals under ultraviolet laser irradiation. This effect has been related to the irradiation-stimulated change of the refraction index of the photonic crystal. The desorption (chemosorption) of oxygen molecules on the surface of the ZnO backbone leading to destruction (formation) of a depletion layer at the ZnO surface has been suggested as the mechanism responsible for the slow variation of polarizability of the inverted ZnO opal.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).
  2. P. M. Johnson, A. F. Koenderink, and W. L. Vos, Phys. Rev. B 66, 081102 (2002).
    [CrossRef]
  3. S. Y. Yang, P. H. Yang, C. D. Liao, J. J. Chieh, Y. P. Chen, H. E. Horng, C.-Y. Hong, and H. C. Yang, Appl. Phys. Lett. 89, 231108 (2006).
    [CrossRef]
  4. P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, Chem. Mater. 11, 2132 (1999).
    [CrossRef]
  5. T. Suntala, Atomic Layer Epitaxy (Blackie Academic and Professional, 1990).
    [CrossRef]
  6. M. Scharrer, X. Wu, A. Yamilov, H. Cao, and R. P. H. Chang, Appl. Phys. Lett. 86, 151113 (2005).
    [CrossRef]
  7. M. T. Tinker and J.-B. Lee, Opt. Express 13, 7174 (2005).
    [CrossRef] [PubMed]
  8. E. Mollwo, in Proceedings of the Photoconductivity Conference, R.G.Breckenridge, ed. (Wiley, 1954), pp. 509-528.
  9. D. H. Zhang, J. Phys. D 28, 1273 (1995).
    [CrossRef]
  10. W. Fang, D. B. Buchholz, R. C. Bailey, J. T. Hupp, R. P. H. Chang, and H. Cao, Appl. Phys. Lett. 85, 3666 (2004).
    [CrossRef]
  11. Y. Takahashi, M. Kanamori, A. Kondoh, H. Minoura, and Y. Ohya, Jpn. J. Appl. Phys., Part 1 33, 6611 (1994).
    [CrossRef]
  12. H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, Adv. Mater. (Weinheim, Ger.) 14, 158 (2002).
    [CrossRef]
  13. P. Sharma, K. Sreenivas, and K. V. Rao, J. Appl. Phys. 93, 3963 (2003).
    [CrossRef]

2006

S. Y. Yang, P. H. Yang, C. D. Liao, J. J. Chieh, Y. P. Chen, H. E. Horng, C.-Y. Hong, and H. C. Yang, Appl. Phys. Lett. 89, 231108 (2006).
[CrossRef]

2005

M. Scharrer, X. Wu, A. Yamilov, H. Cao, and R. P. H. Chang, Appl. Phys. Lett. 86, 151113 (2005).
[CrossRef]

M. T. Tinker and J.-B. Lee, Opt. Express 13, 7174 (2005).
[CrossRef] [PubMed]

2004

W. Fang, D. B. Buchholz, R. C. Bailey, J. T. Hupp, R. P. H. Chang, and H. Cao, Appl. Phys. Lett. 85, 3666 (2004).
[CrossRef]

2003

P. Sharma, K. Sreenivas, and K. V. Rao, J. Appl. Phys. 93, 3963 (2003).
[CrossRef]

2002

P. M. Johnson, A. F. Koenderink, and W. L. Vos, Phys. Rev. B 66, 081102 (2002).
[CrossRef]

H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, Adv. Mater. (Weinheim, Ger.) 14, 158 (2002).
[CrossRef]

1999

P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, Chem. Mater. 11, 2132 (1999).
[CrossRef]

1995

D. H. Zhang, J. Phys. D 28, 1273 (1995).
[CrossRef]

1994

Y. Takahashi, M. Kanamori, A. Kondoh, H. Minoura, and Y. Ohya, Jpn. J. Appl. Phys., Part 1 33, 6611 (1994).
[CrossRef]

Adv. Mater. (Weinheim, Ger.)

H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, Adv. Mater. (Weinheim, Ger.) 14, 158 (2002).
[CrossRef]

Appl. Phys. Lett.

S. Y. Yang, P. H. Yang, C. D. Liao, J. J. Chieh, Y. P. Chen, H. E. Horng, C.-Y. Hong, and H. C. Yang, Appl. Phys. Lett. 89, 231108 (2006).
[CrossRef]

M. Scharrer, X. Wu, A. Yamilov, H. Cao, and R. P. H. Chang, Appl. Phys. Lett. 86, 151113 (2005).
[CrossRef]

W. Fang, D. B. Buchholz, R. C. Bailey, J. T. Hupp, R. P. H. Chang, and H. Cao, Appl. Phys. Lett. 85, 3666 (2004).
[CrossRef]

Chem. Mater.

P. Jiang, J. F. Bertone, K. S. Hwang, and V. L. Colvin, Chem. Mater. 11, 2132 (1999).
[CrossRef]

J. Appl. Phys.

P. Sharma, K. Sreenivas, and K. V. Rao, J. Appl. Phys. 93, 3963 (2003).
[CrossRef]

J. Phys. D

D. H. Zhang, J. Phys. D 28, 1273 (1995).
[CrossRef]

Jpn. J. Appl. Phys., Part 1

Y. Takahashi, M. Kanamori, A. Kondoh, H. Minoura, and Y. Ohya, Jpn. J. Appl. Phys., Part 1 33, 6611 (1994).
[CrossRef]

Opt. Express

Phys. Rev. B

P. M. Johnson, A. F. Koenderink, and W. L. Vos, Phys. Rev. B 66, 081102 (2002).
[CrossRef]

Other

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 1995).

T. Suntala, Atomic Layer Epitaxy (Blackie Academic and Professional, 1990).
[CrossRef]

E. Mollwo, in Proceedings of the Photoconductivity Conference, R.G.Breckenridge, ed. (Wiley, 1954), pp. 509-528.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Transmission spectra of the sample without (solid curve) and under UV irradiation (dotted curve) of 13.5 W cm 2 intensity. Inset, Scanning electron microscopy image of the ZnO inverted opal (scale bar, 1 μ m ).

Fig. 2
Fig. 2

Differential transmission spectra at different UV pumping. Transmission spectrum is shown for reference.

Fig. 3
Fig. 3

(a) Illustration of the transmission spectrum transformation in the empirical model. (b) Δ T spectra: experiment (solid curve), T1–T2 (dotted curve), and T1–T3 (dashed curve).

Fig. 4
Fig. 4

(a) Central wavelength ( λ 0 ) of the Δ T peaks and the Δ T magnitude as a function of UV irradiation intensity. (b) Variation of the effective RI upon the irradiation intensity. Inset, the “on–off” Δ T variation as a function of time and irradiation intensity.

Metrics