Abstract

A diffraction grating engraved on a two-dimensional photonic crystal composed of square air holes in a silica matrix is numerically studied for the compression of ultrashort pulses. The silica is therefore the only solid material of the grating, and the reflection of the incident beam is based on the contrast of the air and silica refractive indices. This optical component enables the single use of silica as a solid material, presenting a high laser-induced damage threshold. In comparison to gratings engraved on a dielectric stack, multilayer dielectric, it offers the advantage of avoiding the presence of interfaces between two solid materials with different mechanical properties and sources of mechanical constraints that can distort the grating.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985).
    [CrossRef]
  2. G. Loewen and E. Popov, Diffraction Gratings and Applications (Marcel Dekker, 1997).
  3. M. D. Perry, R. D. Boyd, J. A. Britten, B. W. Shore, C. Shannon, and L. Li, Opt. Lett. 20, 940 (1995).
    [CrossRef] [PubMed]
  4. J. Neauport, E. Lavastre, G. Raze, G. Dupuy, N. Bonod, M. Balas, G. de Villele, J. Flamand, S. Kaladgew, and F. Desserouer, Opt. Express 19, 12508 (2007).
    [CrossRef]
  5. M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, Phys. Rev. B 71, 115109 (2005).
    [CrossRef]
  6. K. Sakoda, Optical Properties of Photonic Crystals (Springer, 2001).
  7. E. Popov, B. Bozhkov, and M. Neviere, Appl. Opt. 40, 2417 (2001).
    [CrossRef]
  8. D. Maystre, Opt. Express 8, 209 (2001).
    [CrossRef] [PubMed]
  9. N. Bonod, E. Popov, S. Enoch, and J. Neauport, J. Eur. Opt. Soc. Rapid Publ. 1, 06029 (2006).
    [CrossRef]
  10. N. Blanchot, G. Marre, J. Neauport, C. Rouyer, S. Montant, A. Cotel, C. Leblanc, and C. Sauteret, Appl. Opt. 45, 6013 (2006).
    [CrossRef] [PubMed]
  11. R. Padjen, J. M. Gerard, and J. Y. Marzin, J. Mod. Opt. 41, 295 (1994).
    [CrossRef]
  12. M. Neviere and E. Popov, Light Propagation in Periodic Medias: Differential Theory and Design (Marcel Dekker, 2003).
  13. N. Bonod and J. Neauport, Opt. Commun. 260, 649 (2006).
    [CrossRef]
  14. A. J. Waddie, M. J. Thomson, and M. R. Taghizadeh, Opt. Lett. 30, 991 (2005).
    [CrossRef] [PubMed]
  15. V. Mizeikis, H. Sun, A. Marcinkevicius, J. Nishii, S. Matsuo, S. Juodkazis, and H. Misawa, J. Photochem. Photobiol. A 145, 41 (2001).
    [CrossRef]

2007 (1)

J. Neauport, E. Lavastre, G. Raze, G. Dupuy, N. Bonod, M. Balas, G. de Villele, J. Flamand, S. Kaladgew, and F. Desserouer, Opt. Express 19, 12508 (2007).
[CrossRef]

2006 (3)

N. Bonod, E. Popov, S. Enoch, and J. Neauport, J. Eur. Opt. Soc. Rapid Publ. 1, 06029 (2006).
[CrossRef]

N. Blanchot, G. Marre, J. Neauport, C. Rouyer, S. Montant, A. Cotel, C. Leblanc, and C. Sauteret, Appl. Opt. 45, 6013 (2006).
[CrossRef] [PubMed]

N. Bonod and J. Neauport, Opt. Commun. 260, 649 (2006).
[CrossRef]

2005 (2)

A. J. Waddie, M. J. Thomson, and M. R. Taghizadeh, Opt. Lett. 30, 991 (2005).
[CrossRef] [PubMed]

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, Phys. Rev. B 71, 115109 (2005).
[CrossRef]

2001 (3)

E. Popov, B. Bozhkov, and M. Neviere, Appl. Opt. 40, 2417 (2001).
[CrossRef]

D. Maystre, Opt. Express 8, 209 (2001).
[CrossRef] [PubMed]

V. Mizeikis, H. Sun, A. Marcinkevicius, J. Nishii, S. Matsuo, S. Juodkazis, and H. Misawa, J. Photochem. Photobiol. A 145, 41 (2001).
[CrossRef]

1995 (1)

1994 (1)

R. Padjen, J. M. Gerard, and J. Y. Marzin, J. Mod. Opt. 41, 295 (1994).
[CrossRef]

1985 (1)

D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985).
[CrossRef]

Appl. Opt. (2)

J. Eur. Opt. Soc. Rapid Publ. (1)

N. Bonod, E. Popov, S. Enoch, and J. Neauport, J. Eur. Opt. Soc. Rapid Publ. 1, 06029 (2006).
[CrossRef]

J. Mod. Opt. (1)

R. Padjen, J. M. Gerard, and J. Y. Marzin, J. Mod. Opt. 41, 295 (1994).
[CrossRef]

J. Photochem. Photobiol. A (1)

V. Mizeikis, H. Sun, A. Marcinkevicius, J. Nishii, S. Matsuo, S. Juodkazis, and H. Misawa, J. Photochem. Photobiol. A 145, 41 (2001).
[CrossRef]

Opt. Commun. (2)

N. Bonod and J. Neauport, Opt. Commun. 260, 649 (2006).
[CrossRef]

D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985).
[CrossRef]

Opt. Express (2)

J. Neauport, E. Lavastre, G. Raze, G. Dupuy, N. Bonod, M. Balas, G. de Villele, J. Flamand, S. Kaladgew, and F. Desserouer, Opt. Express 19, 12508 (2007).
[CrossRef]

D. Maystre, Opt. Express 8, 209 (2001).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. B (1)

M. Mero, J. Liu, W. Rudolph, D. Ristau, and K. Starke, Phys. Rev. B 71, 115109 (2005).
[CrossRef]

Other (3)

K. Sakoda, Optical Properties of Photonic Crystals (Springer, 2001).

G. Loewen and E. Popov, Diffraction Gratings and Applications (Marcel Dekker, 1997).

M. Neviere and E. Popov, Light Propagation in Periodic Medias: Differential Theory and Design (Marcel Dekker, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Two-dimensional photonic crystal composed of silica (in gray, refraction index n = 1.45 ) and air (in white, n = 1 ). Air holes have a square cross section. The binary grating has grooves with height h and width c and presents a period denoted d.

Fig. 2
Fig. 2

Reflectivity of the crystal according to (a) the length of the incident wavelength λ and (b) the angle of incidence θ. Ten layers of air holes are in the silica. Δ = 350 nm , filling factor of 0.8, TE polarization; (a) λ = 1053 nm and (b) θ = 70.9 ° . The refractive index of the silica is maintained constant and is equal to 1.45.

Fig. 3
Fig. 3

Reflected efficiency of the first order as a function of the height h and width c of the grooves in nanometers.

Fig. 4
Fig. 4

Reflected efficiencies of the first order as a function of (a) the wavelength λ ( θ = 77.2 ° ) and (b) the angle of incidence θ ( λ = 1053 nm ) . h = 500 and c = 340 nm .

Fig. 5
Fig. 5

E 2 normalized by the incident field intensity in the upper part of the grating over one period. The axes are in nanometers; h = 500 nm and c = 340 nm .

Metrics