Abstract

We present a simple upconversion fiber-optic confocal microscope design using a near-infrared laser for pumping of a rare-earth-doped glass powder. The nonlinear optical frequency conversion process is highly efficient with more than 2% upconversion fluorescence efficiency at a near-infrared pumping wavelength of 1.55μm. The upconversion confocal design allows the use of conventional Si detectors and 1.55μm near-infrared pump light. The lateral and axial resolutions of the system were equal to or better than 1.10 and 13.11μm, respectively.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. W. Denk, H. J. Strickler, and W. W. Webb, Science 248, 73 (1990).
    [CrossRef] [PubMed]
  2. S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. Malak, I. Gryczynski, and J. R. Lakowicz, J. Biomed. Opt. 1, 71 (1996).
    [CrossRef]
  3. F. Auzel, in Spectroscopy and Dynamics of Collective Excitations in Solids, B.Di Bartolo, ed. (Plenum Press, 1997).
  4. A. Fragola, L. Aigouy, Y. De Wilde, and M. Mortier, J. Microsc. 210, 198 (2003).
    [CrossRef] [PubMed]
  5. T. Dabbs and M. Glass, Appl. Opt. 31, 3030 (1992).
    [CrossRef] [PubMed]
  6. J. E. N. Jonkman and E. H. K. Stelzer, in Confocal and Two-Photon Microscopy, A.Diaspro, ed. (Wiley-Liss, 2002).
  7. D. H. Kim, I. K. Ilev, and J. U. Kang, "Fiber-optic confocal microscopy using a 1.55 μm fiber laser for multimodal biophotonics applications," IEEE J. Sel. Top. Quantum Electron. 14, 2008 (to be published).
    [PubMed]

2008 (1)

D. H. Kim, I. K. Ilev, and J. U. Kang, "Fiber-optic confocal microscopy using a 1.55 μm fiber laser for multimodal biophotonics applications," IEEE J. Sel. Top. Quantum Electron. 14, 2008 (to be published).
[PubMed]

2003 (1)

A. Fragola, L. Aigouy, Y. De Wilde, and M. Mortier, J. Microsc. 210, 198 (2003).
[CrossRef] [PubMed]

1996 (1)

S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. Malak, I. Gryczynski, and J. R. Lakowicz, J. Biomed. Opt. 1, 71 (1996).
[CrossRef]

1992 (1)

1990 (1)

W. Denk, H. J. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

D. H. Kim, I. K. Ilev, and J. U. Kang, "Fiber-optic confocal microscopy using a 1.55 μm fiber laser for multimodal biophotonics applications," IEEE J. Sel. Top. Quantum Electron. 14, 2008 (to be published).
[PubMed]

J. Biomed. Opt. (1)

S. W. Hell, K. Bahlmann, M. Schrader, A. Soini, H. Malak, I. Gryczynski, and J. R. Lakowicz, J. Biomed. Opt. 1, 71 (1996).
[CrossRef]

J. Microsc. (1)

A. Fragola, L. Aigouy, Y. De Wilde, and M. Mortier, J. Microsc. 210, 198 (2003).
[CrossRef] [PubMed]

Science (1)

W. Denk, H. J. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Other (2)

J. E. N. Jonkman and E. H. K. Stelzer, in Confocal and Two-Photon Microscopy, A.Diaspro, ed. (Wiley-Liss, 2002).

F. Auzel, in Spectroscopy and Dynamics of Collective Excitations in Solids, B.Di Bartolo, ed. (Plenum Press, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of experimental setup used for upconversion confocal microscopy.

Fig. 2
Fig. 2

Spectrum of (a) C-band fiber amplifier and (b) upconversion from UCP.

Fig. 3
Fig. 3

(a) Optical microscope images of CELL membrane. Upconversion confocal image of the sample using NA = 0.85 objective lens for (b) N = 100 , d = 4 μ m ; (c) N = 100 , d = 2 μ m ; and (d) N = 100 , d = 1 μ m .

Fig. 4
Fig. 4

Preparation of the sample combining CELL and UCP.

Fig. 5
Fig. 5

(a) z-directional and (b) x y planar irregularity of phosphor powder.

Metrics