Abstract

An original technique was presented for noncontact three-dimensional temperature field measurement in a participating medium using radiative information captured by a CCD camera. This technique was based on the backward Monte Carlo method and was faster and more efficient than traditional techniques based on the forward Monte Carlo method. A numerical simulation case was adopted to validate the technique. It was found that the technique was capable of reconstructing the three-dimensional temperature field well, even with noisy input data.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. H. C. Zhou, S. D. Han, F. Sheng, and C. G. Zheng, J. Quant. Spectrosc. Radiat. Transf. 72, 361 (2002).
    [CrossRef]
  2. H. C. Zhou, F. Shen, S. D. Han, and C. G. Zheng, Numer. Heat Transfer, Part A 38, 757 (2000).
    [CrossRef]
  3. M. F. Modest, J. Heat Transfer 125, 57 (2003).
    [CrossRef]
  4. K. M. Case, Rev. Mod. Phys. 29, 651 (1957).
    [CrossRef]
  5. H. R. Gordon, Appl. Opt. 24, 4172 (1985).
    [CrossRef] [PubMed]
  6. D. V. Walters and R. O. Buckius, in Annual Review of Heat Transfer (CRC Press, 1994), pp. 131-176.
  7. C. C. Paige and M. A. Saunders, ACM Trans. Math. Softw. 8, 43 (1982).
    [CrossRef]
  8. C. C. Paige, M. A. Saunders, ACM Trans. Math. Softw. 8, 195 (1982).
    [CrossRef]
  9. R. Viskanta and M. P. Mengüç, Prog. Energy Combust. Sci. 13, 97 (1987).
    [CrossRef]
  10. M. F. Modest, Radiative Heat Transfer (McGraw-Hill, 1993), pp. 383-437.
  11. D. G. Goodwin and M. Mitchner, Int. J. Heat Mass Transfer 32, 627 (1989).
    [CrossRef]
  12. C. Kim and N. Lior, Fuel 74, 1891 (1995).
    [CrossRef]

2003

M. F. Modest, J. Heat Transfer 125, 57 (2003).
[CrossRef]

2002

H. C. Zhou, S. D. Han, F. Sheng, and C. G. Zheng, J. Quant. Spectrosc. Radiat. Transf. 72, 361 (2002).
[CrossRef]

2000

H. C. Zhou, F. Shen, S. D. Han, and C. G. Zheng, Numer. Heat Transfer, Part A 38, 757 (2000).
[CrossRef]

1995

C. Kim and N. Lior, Fuel 74, 1891 (1995).
[CrossRef]

1989

D. G. Goodwin and M. Mitchner, Int. J. Heat Mass Transfer 32, 627 (1989).
[CrossRef]

1987

R. Viskanta and M. P. Mengüç, Prog. Energy Combust. Sci. 13, 97 (1987).
[CrossRef]

1985

1982

C. C. Paige and M. A. Saunders, ACM Trans. Math. Softw. 8, 43 (1982).
[CrossRef]

C. C. Paige, M. A. Saunders, ACM Trans. Math. Softw. 8, 195 (1982).
[CrossRef]

1957

K. M. Case, Rev. Mod. Phys. 29, 651 (1957).
[CrossRef]

ACM Trans. Math. Softw.

C. C. Paige and M. A. Saunders, ACM Trans. Math. Softw. 8, 43 (1982).
[CrossRef]

C. C. Paige, M. A. Saunders, ACM Trans. Math. Softw. 8, 195 (1982).
[CrossRef]

Appl. Opt.

Fuel

C. Kim and N. Lior, Fuel 74, 1891 (1995).
[CrossRef]

Int. J. Heat Mass Transfer

D. G. Goodwin and M. Mitchner, Int. J. Heat Mass Transfer 32, 627 (1989).
[CrossRef]

J. Heat Transfer

M. F. Modest, J. Heat Transfer 125, 57 (2003).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf.

H. C. Zhou, S. D. Han, F. Sheng, and C. G. Zheng, J. Quant. Spectrosc. Radiat. Transf. 72, 361 (2002).
[CrossRef]

Numer. Heat Transfer, Part A

H. C. Zhou, F. Shen, S. D. Han, and C. G. Zheng, Numer. Heat Transfer, Part A 38, 757 (2000).
[CrossRef]

Prog. Energy Combust. Sci.

R. Viskanta and M. P. Mengüç, Prog. Energy Combust. Sci. 13, 97 (1987).
[CrossRef]

Rev. Mod. Phys.

K. M. Case, Rev. Mod. Phys. 29, 651 (1957).
[CrossRef]

Other

M. F. Modest, Radiative Heat Transfer (McGraw-Hill, 1993), pp. 383-437.

D. V. Walters and R. O. Buckius, in Annual Review of Heat Transfer (CRC Press, 1994), pp. 131-176.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Coordinate system and dimensions for 3D rectangular enclosure.

Fig. 2
Fig. 2

Exact temperature field in participating media.

Fig. 3
Fig. 3

Relative errors for absorption and scattering coefficients of 0.4 and 0.6 m 1 .

Fig. 4
Fig. 4

Relative errors for absorption and scattering coefficients of 4 and 4 m 1 .

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

s ̂ I λ j ( r , s ̂ ) = S λ j ( r , s ̂ ) β λ ( r ) I λ j ( r , s ̂ ) + σ s λ ( r ) 4 π 4 π I λ j ( r , s ̂ ) Φ λ ( r , s ̂ , s ̂ ) d Ω , j = 1 , 2 ,
I λ j ( r w , s ̂ ) = I w λ j ( r w , s ̂ ) , j = 1 , 2 ,
I λ 1 ( r i , s ̂ i ) = { 0 l κ κ λ ( r ) I b λ ( r ) d l , l κ < l , ϵ λ ( r w ) I b λ ( r w ) + 0 l κ λ ( r ) I b λ ( r ) d l , l κ l , }
{ 1 S s = 1 S [ n = 1 N ( κ λ n I b λ n l 1 s n ) + w 1 s ϵ w λ I w b λ ] = I λ 1 , 1 S s = 1 S [ n = 1 N ( κ λ n I b λ n l m s n ) + w m s ϵ w λ I w b λ ] = I λ m , 1 S s = 1 S [ n = 1 N ( κ λ n I b λ n l M s n ) + w M s ϵ w λ I w b λ ] = I λ M , }
A I + P = I CCD ,
E b λ n = π I b λ n = c 1 λ 5 exp [ c 2 ( λ T n ) ] ,
E rel , i = 100 T recon , i T exact , i T exact , i ,

Metrics