Abstract

We demonstrate a high-power red-green-blue laser source based on the quasi-phase-matching and intermittent oscillating dual-wavelength laser technique. A cascaded LiTaO3 superlattice was used to achieve the generation of red light at 660nm, green light at 532nm, and blue light at 440nm to obtain the output of red-green-blue laser light from a diode-side-pumped Q-switched intermittent oscillating dual-wavelength Nd:YAG laser. The average output power of red-green-blue of 1.01W was achieved under the total fundamental power of 5.1W, which corresponds to the conversion efficiency of 20%.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. H. X. Li, Y. X. Fan, P. Xu, S. N. Zhu, P. Lu, Z. D. Gao, H. T. Wang, Y. Y. Zhu, N. B. Ming, and J. L. He, J. Appl. Phys. 96, 7756 (2004).
    [CrossRef]
  2. J. Liao, J. L. He, H. Liu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, Appl. Phys. Lett. 82, 3159 (2003).
    [CrossRef]
  3. T. W. Ren, J. L. He, C. Zhang, S. N. Zhu, Y. Y. Zhu, and Y. Hang, J. Phys. Condens. Matter 16, 3289 (2004).
    [CrossRef]
  4. X. W. Fan, J. L. He, H. T. Huang, and L. Xue, IEEE J. Quantum Electron. 43, 884 (2007).
    [CrossRef]
  5. S. N. Zhu, Y. Y. Zhu, and N. B. Ming, Science 278, 843 (1997).
    [CrossRef]
  6. B. Y. Gu, Y. Zhang, and B. Z. Dong, J. Appl. Phys. 87, 7629 (2000).
    [CrossRef]
  7. Z. W. Liu, S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, J. L. He, C. Zhang, H. T. Wang, N. B. Ming, X. Y. Liang, and Z. Y. Xu, Jpn. J. Appl. Phys., Part 1 40, 6841 (2001).
    [CrossRef]
  8. S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. G. Ge, and N. B. Ming, J. Appl. Phys. 77, 5481 (1995).
    [CrossRef]
  9. V. Y. Shur, E. L. Rumyontsev, E. V. Nikolaeva, E. I. Shishkin, D. V. Fursov, R. C. Batchko, L. A. Eyres, M. M. Fejer, and R. L. Byer, Appl. Phys. Lett. 76, 143 (2000).
    [CrossRef]
  10. http://www.nd.edu/~sboker/ColorVision2/CIEColorSpace2.gif.
  11. S. V. Tovstonog, S. Kurimura, and K. Kitamura, Jpn. J. Appl. Phys., Part 1 45, L907 (2006).
    [CrossRef]

2007

X. W. Fan, J. L. He, H. T. Huang, and L. Xue, IEEE J. Quantum Electron. 43, 884 (2007).
[CrossRef]

2006

S. V. Tovstonog, S. Kurimura, and K. Kitamura, Jpn. J. Appl. Phys., Part 1 45, L907 (2006).
[CrossRef]

2004

H. X. Li, Y. X. Fan, P. Xu, S. N. Zhu, P. Lu, Z. D. Gao, H. T. Wang, Y. Y. Zhu, N. B. Ming, and J. L. He, J. Appl. Phys. 96, 7756 (2004).
[CrossRef]

T. W. Ren, J. L. He, C. Zhang, S. N. Zhu, Y. Y. Zhu, and Y. Hang, J. Phys. Condens. Matter 16, 3289 (2004).
[CrossRef]

2003

J. Liao, J. L. He, H. Liu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, Appl. Phys. Lett. 82, 3159 (2003).
[CrossRef]

2001

Z. W. Liu, S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, J. L. He, C. Zhang, H. T. Wang, N. B. Ming, X. Y. Liang, and Z. Y. Xu, Jpn. J. Appl. Phys., Part 1 40, 6841 (2001).
[CrossRef]

2000

B. Y. Gu, Y. Zhang, and B. Z. Dong, J. Appl. Phys. 87, 7629 (2000).
[CrossRef]

V. Y. Shur, E. L. Rumyontsev, E. V. Nikolaeva, E. I. Shishkin, D. V. Fursov, R. C. Batchko, L. A. Eyres, M. M. Fejer, and R. L. Byer, Appl. Phys. Lett. 76, 143 (2000).
[CrossRef]

1997

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, Science 278, 843 (1997).
[CrossRef]

1995

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. G. Ge, and N. B. Ming, J. Appl. Phys. 77, 5481 (1995).
[CrossRef]

Appl. Phys. Lett.

J. Liao, J. L. He, H. Liu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, Appl. Phys. Lett. 82, 3159 (2003).
[CrossRef]

V. Y. Shur, E. L. Rumyontsev, E. V. Nikolaeva, E. I. Shishkin, D. V. Fursov, R. C. Batchko, L. A. Eyres, M. M. Fejer, and R. L. Byer, Appl. Phys. Lett. 76, 143 (2000).
[CrossRef]

IEEE J. Quantum Electron.

X. W. Fan, J. L. He, H. T. Huang, and L. Xue, IEEE J. Quantum Electron. 43, 884 (2007).
[CrossRef]

J. Appl. Phys.

B. Y. Gu, Y. Zhang, and B. Z. Dong, J. Appl. Phys. 87, 7629 (2000).
[CrossRef]

H. X. Li, Y. X. Fan, P. Xu, S. N. Zhu, P. Lu, Z. D. Gao, H. T. Wang, Y. Y. Zhu, N. B. Ming, and J. L. He, J. Appl. Phys. 96, 7756 (2004).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. G. Ge, and N. B. Ming, J. Appl. Phys. 77, 5481 (1995).
[CrossRef]

J. Phys. Condens. Matter

T. W. Ren, J. L. He, C. Zhang, S. N. Zhu, Y. Y. Zhu, and Y. Hang, J. Phys. Condens. Matter 16, 3289 (2004).
[CrossRef]

Jpn. J. Appl. Phys., Part 1

Z. W. Liu, S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, J. L. He, C. Zhang, H. T. Wang, N. B. Ming, X. Y. Liang, and Z. Y. Xu, Jpn. J. Appl. Phys., Part 1 40, 6841 (2001).
[CrossRef]

S. V. Tovstonog, S. Kurimura, and K. Kitamura, Jpn. J. Appl. Phys., Part 1 45, L907 (2006).
[CrossRef]

Science

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, Science 278, 843 (1997).
[CrossRef]

Other

http://www.nd.edu/~sboker/ColorVision2/CIEColorSpace2.gif.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup for RGB three colors generation.

Fig. 2
Fig. 2

Measured temperature tuning curves of RGB lights. A simple Gaussian fit for three sets of data is to guide the eye. The Gaussian fit did not consider the wave coupling during the THG process, but the experimental data demonstrated the coupling effect.

Fig. 3
Fig. 3

Photo of the RGB beams separated by a prism from the setup.

Tables (1)

Tables Icon

Table 1 Structure Parameters of the Five Quasi-Periodical Channels in First Segment a

Metrics