Abstract

We demonstrate and analyze data modulation of terahertz (THz) signals in the 1Mbits range. THz pulse trains are phase and amplitude encoded with pseudorandom binary data, transmitted over a short distance, and detected. Different modulation formats are generated. Bit error measurements characterize the communication channel. We estimate from experimental results the maximum data rates for an optimized system.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. Sachs, P. Peyerl, and M. Rossberg, in Proceedings of the 16th IEEE Instrumentation and Measurement Technology Conference, 1999, IMTC/99 (IEEE, 1999), Vol. 3, pp. 1390-1395.
    [CrossRef]
  2. D.Daniels, ed., Ground Penetrating Radar, 2nd ed. (Institution of Engineering and Technology, 2004), Chap. 6.6.2.
    [CrossRef]
  3. A. Hirata, T. Kosugi, H. Takahashi, R. Yamaguchi, F. Nakajima, T. Furuta, H. Ito, H. Sugahara, Y. Sato, and T. Nagatsuma, IEEE Trans. Microwave Theory Tech. 54, 1937 (2006).
    [CrossRef]
  4. I. H. Libon, S. Baumgartner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch, and P. Dawson, Appl. Phys. Lett. 76, 2821 (2000).
    [CrossRef]
  5. R. Kersting, G. Strasser, and K. Unterrainer, Electron. Lett. 36, 1156 (2000).
    [CrossRef]
  6. H.-T. Chen, W. J. Padilla, J. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, Nature 444, 597 (2006).
    [CrossRef] [PubMed]
  7. T.-A. Liu, G.-R. Lin, Y.-C. Chang, and C.-L. Pan, Opt. Express 13, 10416 (2005).
    [CrossRef] [PubMed]
  8. T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, and M. Koch, Electron. Lett. 40, 124 (2004).
    [CrossRef]
  9. J. Van Rudd and D. Mittleman, J. Opt. Soc. Am. B 19, 319 (2002).
    [CrossRef]
  10. See, e.g., ITU standard ITU-T G.975.1.
  11. See, e.g., J. G. Proakis, Digital Communications, 3rd ed. (McGraw-Hill, 1995), Chap. 5.2.
  12. G. Zhao, R. N. Schouten, N. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, Rev. Sci. Instrum. 73, 1715 (2002).
    [CrossRef]

2006

H.-T. Chen, W. J. Padilla, J. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, Nature 444, 597 (2006).
[CrossRef] [PubMed]

A. Hirata, T. Kosugi, H. Takahashi, R. Yamaguchi, F. Nakajima, T. Furuta, H. Ito, H. Sugahara, Y. Sato, and T. Nagatsuma, IEEE Trans. Microwave Theory Tech. 54, 1937 (2006).
[CrossRef]

2005

2004

T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, and M. Koch, Electron. Lett. 40, 124 (2004).
[CrossRef]

2002

G. Zhao, R. N. Schouten, N. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, Rev. Sci. Instrum. 73, 1715 (2002).
[CrossRef]

J. Van Rudd and D. Mittleman, J. Opt. Soc. Am. B 19, 319 (2002).
[CrossRef]

2000

I. H. Libon, S. Baumgartner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch, and P. Dawson, Appl. Phys. Lett. 76, 2821 (2000).
[CrossRef]

R. Kersting, G. Strasser, and K. Unterrainer, Electron. Lett. 36, 1156 (2000).
[CrossRef]

Appl. Phys. Lett.

I. H. Libon, S. Baumgartner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch, and P. Dawson, Appl. Phys. Lett. 76, 2821 (2000).
[CrossRef]

Electron. Lett.

R. Kersting, G. Strasser, and K. Unterrainer, Electron. Lett. 36, 1156 (2000).
[CrossRef]

T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, and M. Koch, Electron. Lett. 40, 124 (2004).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

A. Hirata, T. Kosugi, H. Takahashi, R. Yamaguchi, F. Nakajima, T. Furuta, H. Ito, H. Sugahara, Y. Sato, and T. Nagatsuma, IEEE Trans. Microwave Theory Tech. 54, 1937 (2006).
[CrossRef]

J. Opt. Soc. Am. B

Nature

H.-T. Chen, W. J. Padilla, J. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, Nature 444, 597 (2006).
[CrossRef] [PubMed]

Opt. Express

Rev. Sci. Instrum.

G. Zhao, R. N. Schouten, N. van der Valk, W. Th. Wenckebach, and P. C. M. Planken, Rev. Sci. Instrum. 73, 1715 (2002).
[CrossRef]

Other

See, e.g., ITU standard ITU-T G.975.1.

See, e.g., J. G. Proakis, Digital Communications, 3rd ed. (McGraw-Hill, 1995), Chap. 5.2.

J. Sachs, P. Peyerl, and M. Rossberg, in Proceedings of the 16th IEEE Instrumentation and Measurement Technology Conference, 1999, IMTC/99 (IEEE, 1999), Vol. 3, pp. 1390-1395.
[CrossRef]

D.Daniels, ed., Ground Penetrating Radar, 2nd ed. (Institution of Engineering and Technology, 2004), Chap. 6.6.2.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

THz communication setup based on a THz TDS system. HA, high-voltage amplifier; PCS, photoconductive switch; TA, transimpedance amplifier; PA, preamplifier; LP, low pass; Clk, clock tone.

Fig. 2
Fig. 2

(a) Emitter power measured with Golay cell and approximated by Eq. (1). Squares, bipolar modulation with zero offset; stars, on/off modulation with V pp 2 voltage offset; solid curves, fits to the data. (b)–(d) Eye diagrams at different date rates and error-free operation and at 1.5 Mbit s with BER = 10 4 . (e), (f) Measured and simulated required TVS at different data rates; simulated eye diagrams show good agreement with (b)–(d). TX, transmitter.

Fig. 3
Fig. 3

(a) BER versus offset voltage at TVS = 3.2 V for 1.5 Mbit s data rate. Its quadratical fitting (solid curve) yields γ exp . (b) Measured BER versus TVS for 1.5 Mbit s bipolar modulation. Its small divergence from a straight line indicates system nonlinearity.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P THz V pp 2 ( 1 α s V pp )
BER = 1 2 erfc ( Q 2 ) e Q 2 2 2 π Q with Q = Δ E 2 σ ,
log ( BER ) 3.882 1.690 δ Q 0.205 δ Q 2 Q 0 = 3.65 , BER = 1.310 4 ,
δ Q = Q 0 2 [ α s 2 16 V pp ( 1 α s V pp ) 2 + 3 α s 8 V pp 3 2 ( 1 α s V pp ) ] v off 2 ,
γ num = 1.69 Q 0 2 [ α s 2 16 V pp ( 1 α s V pp ) 2 + 3 α s 8 V pp 3 2 ( 1 α s V p p ) ] .

Metrics