Abstract

We propose a novel technique to implement arbitrary pulse shaping of an ultrashort pulse by intensity-only modulation in the frequency domain. The intensity-only modulation is realized by nonuniformly spaced sampling in the frequency domain. By properly designing the sampling function, multiple pulses in the time domain will be generated with one of which being the desired waveform. The desired waveform is then selected by a time window. Both the optical amplitude and phase distributions of the output waveform can be controlled. Theoretical analysis is presented. An example showing the generation of a rectangular pulse is provided.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
    [CrossRef]
  2. Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, Nat. Photonics 1, 463 (2007).
    [CrossRef]
  3. R. E. Saperstien, N. Alic, D. Pasasenko, R. Rokitski, and Y. Fainman, J. Opt. Soc. Am. B 22, 2427 (2005).
    [CrossRef]
  4. J. Azana, N. K. Berger, B. Levit, and B. Fischer, Opt. Lett. 30, 3228 (2005).
    [CrossRef] [PubMed]
  5. H. Chi and J. Yao, Electron. Lett. 43, 415 (2007).
    [CrossRef]
  6. R. N. Thurston, J. P. Heritage, A. M. Weiner, and W. J. Tomlinson, IEEE J. Quantum Electron. QE-22, 682 (1986).
    [CrossRef]
  7. J. W. Wilson, P. Schlup, and R. A. Bartels, Opt. Express 15, 8979 (2007).
    [CrossRef] [PubMed]

2007 (3)

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, Nat. Photonics 1, 463 (2007).
[CrossRef]

H. Chi and J. Yao, Electron. Lett. 43, 415 (2007).
[CrossRef]

J. W. Wilson, P. Schlup, and R. A. Bartels, Opt. Express 15, 8979 (2007).
[CrossRef] [PubMed]

2005 (2)

2000 (1)

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
[CrossRef]

1986 (1)

R. N. Thurston, J. P. Heritage, A. M. Weiner, and W. J. Tomlinson, IEEE J. Quantum Electron. QE-22, 682 (1986).
[CrossRef]

Electron. Lett. (1)

H. Chi and J. Yao, Electron. Lett. 43, 415 (2007).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. N. Thurston, J. P. Heritage, A. M. Weiner, and W. J. Tomlinson, IEEE J. Quantum Electron. QE-22, 682 (1986).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, Nat. Photonics 1, 463 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Arbitrary pulse shaping with intensity-only modulation in the frequency domain.

Fig. 2
Fig. 2

Frequency-domain illustration. (a) Spectra of the input and desired output waveforms. (b) Designed frequency response of a regular [ H ( ω ) ] and the proposed [ S ( ω ) ] filters. (c) Zoom-in display of S ( ω ) .

Fig. 3
Fig. 3

Time-domain illustration. (a) Waveform of the input pulse and the generated pulse by the regular filter H ( ω ) . (b) Generated multiple pulses by the proposed filter S ( ω ) . (c) Generated rectangle waveform selected by a time window and its phase distribution.

Fig. 4
Fig. 4

Flow chart for the design of arbitrary pulse shaping with intensity-only modulation in the frequency domain. IM, intensity modulation.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

S 0 ( ω ) = k F k exp ( j k 2 π Ω ω ) ,
S ( ω ) = A ( ω ) S 0 [ ω + f ( ω ) ] ,
S ( ω ) = k F k A ( ω ) exp [ j k 2 π Ω f ( ω ) ] exp ( j k 2 π Ω ω ) .
S ( ω ) = k F k S k ( ω ) exp ( j k 2 π Ω ω ) .
s ( t ) = k F k s k ( t + k T ) ,
A ( ω ) exp [ j k 2 π Ω f ( ω ) ] = H ( ω ) exp [ j φ ( ω ) ] .
A ( ω ) = H ( ω ) ,
f ( ω ) = φ ( ω ) 2 π Ω m .

Metrics