Abstract

The possibility of achieving multikilowatt laser radiation by spectrally combining beams using volume Bragg gratings (VBGs) is shown. The VBGs recorded in a photothermorefractive glass exhibit long-term stability of all its parameters in high-power laser beams with power density >1MWcm2 in the cw beam of total power on a kilowatt level. We consider an architecture-specific beam-combining scheme and address the cross-talk minimization problem based on optimal channel positioning. Five-channel high efficiency spectral beam combining resulted in a >750W near-diffraction-limited cw beam has been demonstrated experimentally.

© 2008 Optical Society of America

Full Article  |  PDF Article

Corrections

Armen Sevian, Oleksiy Andrusyak, Igor Ciapurin, Vadim Smirnov, George Venus, and Leonid Glebov, "Efficient power scaling of laser radiation by spectral-beam combining: erratum," Opt. Lett. 33, 760-760 (2008)
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-33-7-760

References

  • View by:
  • |
  • |

  1. A. Shirakawa, T. Saitou, T. Sekiguchi, and K. Ueda, Opt. Express 10, 1167 (2002).
    [PubMed]
  2. G. T. Moore, Appl. Opt. 41, 6399 (2002).
    [CrossRef] [PubMed]
  3. S. J. Augst, T. Y. Fan, and A. Sanchez, in Conference on Lasers and Electro-optics/Quantum Electronics and Laser Science Conference Technical Digest (Optical Society of America, 2003), paper CMK5.
  4. E. J. Bochove, IEEE J. Quantum Electron. 38, 432 (2002).
    [CrossRef]
  5. S. J. Augst, A. K. Goyal, R. L. Aggarwal, T. Y. Fan, and A. Sanchez, Opt. Lett. 28, 331 (2003).
    [CrossRef] [PubMed]
  6. I. V. Ciapurin, L. B. Glebov, L. N. Glebova, V. I. Smirnov, and E. V. Rotari, Proc. SPIE 4974, 209 (2003).
    [CrossRef]
  7. L. B. Glebov, V. I. Smirnov, C. M. Stickley, and I. V. Ciapurin, Proc. SPIE 4724, 101 (2002).
    [CrossRef]
  8. O. M. Efimov, L. B. Glebov, and V. I. Smirnov, U.S. patent 6,673,497 (January 6, 2004).

2003 (2)

I. V. Ciapurin, L. B. Glebov, L. N. Glebova, V. I. Smirnov, and E. V. Rotari, Proc. SPIE 4974, 209 (2003).
[CrossRef]

S. J. Augst, A. K. Goyal, R. L. Aggarwal, T. Y. Fan, and A. Sanchez, Opt. Lett. 28, 331 (2003).
[CrossRef] [PubMed]

2002 (4)

E. J. Bochove, IEEE J. Quantum Electron. 38, 432 (2002).
[CrossRef]

L. B. Glebov, V. I. Smirnov, C. M. Stickley, and I. V. Ciapurin, Proc. SPIE 4724, 101 (2002).
[CrossRef]

G. T. Moore, Appl. Opt. 41, 6399 (2002).
[CrossRef] [PubMed]

A. Shirakawa, T. Saitou, T. Sekiguchi, and K. Ueda, Opt. Express 10, 1167 (2002).
[PubMed]

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

E. J. Bochove, IEEE J. Quantum Electron. 38, 432 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Proc. SPIE (2)

I. V. Ciapurin, L. B. Glebov, L. N. Glebova, V. I. Smirnov, and E. V. Rotari, Proc. SPIE 4974, 209 (2003).
[CrossRef]

L. B. Glebov, V. I. Smirnov, C. M. Stickley, and I. V. Ciapurin, Proc. SPIE 4724, 101 (2002).
[CrossRef]

Other (2)

O. M. Efimov, L. B. Glebov, and V. I. Smirnov, U.S. patent 6,673,497 (January 6, 2004).

S. J. Augst, T. Y. Fan, and A. Sanchez, in Conference on Lasers and Electro-optics/Quantum Electronics and Laser Science Conference Technical Digest (Optical Society of America, 2003), paper CMK5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Measured spectral selectivity of reflecting VBG in a 3 mm diameter beam (circles) and its simulation for a plane parallel beam (solid curve).

Fig. 2
Fig. 2

Schematic of SBC setup with five distinct laser sources and identical reflecting VBGs.

Fig. 3
Fig. 3

Combined plot of VBG spectral selectivity (solid curve) and cross talk (dashed curve).

Fig. 4
Fig. 4

Dependence of system combining efficiency on the number of channels (1,2) without and (3,4; η c = 0.95 ) with the cross talk. Transmittance η T is (1,3) 0.9994 and (2,4) 0.9945.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P total ( N ) = P ( η T N 1 + η D 1 η T N 1 1 η T ) .
η total ( N ) = 1 N ( η T N 1 + η D 1 η T N 1 1 η T ) .
P i = P ( η T N i + 1 η D η 1 c η 2 c η ( N i ) c ) P N = P ( η T η D ) .
η total ( N ) = η D ( n i = 1 N n i 1 η T N n i 1 n i = 1 N n i 1 η ic ) + η T N 1 n i = 1 N 1 η ic .

Metrics