Abstract

We demonstrate parametric generation of a new coherent field with a polarization orthogonal to the signal field via an all-resonant four-wave mixing process in a double-ladder system. We show that the generation of the coherent field is an efficient resonantly enhanced process that can be realized with a fairly dilute medium and relatively weak drive fields. The large parameter domain that exists in this system provides good control for both the weak probe and the generated field. Potential applications in optical communication are outlined.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. R. W. Boyd, Nonlinear Optics (Elsevier, 2003).
  2. S. E. Harris, Phys. Today 50, 36 (1997).
    [CrossRef]
  3. J. Gea-banacloche, Y. Li, S. Jin, and M. Xiao, Phys. Rev. A 51, 576 (1995).
    [CrossRef] [PubMed]
  4. S. E. Harris and Y. Yamamoto, Phys. Rev. Lett. 81, 3611 (1998).
    [CrossRef]
  5. M. D. Lukin, M. Fleischhauer, A. S. Zibrov, H. G. Robinson, V. L. Velichansky, L. Hollberg, and M. O. Scully, Phys. Rev. Lett. 79, 2959 (1997).
    [CrossRef]
  6. Y. Li and M. Xiao, Opt. Lett. 21, 1064 (1996).
    [CrossRef] [PubMed]
  7. E. E. Mikhailov, V. A. Sautenkov, Y. V. Rostovtsev, A. Zhang, M. S. Zubairy, M. O. Scully, and G. R. Welch, Phys. Rev. A 74, 013807 (2006).
    [CrossRef]
  8. V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, Phys. Rev. Lett. 99, 143601 (2007).
    [CrossRef] [PubMed]
  9. S. Wielandy and A. L. Gaeta, Phys. Rev. Lett. 81, 3359 (1998).
    [CrossRef]
  10. A. K. Patnaik and G. S. Agarwal, Opt. Commun. 199, 127 (2001).
    [CrossRef]
  11. T. H. Yoon, C. Y. Park, and S. J. Park, Phys. Rev. A 70, 061803 (2004).
    [CrossRef]
  12. Y. R. Shen, Principles of Nonlinear Optics (Wiley, 1984).
  13. S. Roy, W. D. Kulatilaka, S. V. Naik, N. M. Laurendeau, R. P. Lucht, and J. R. Gord, Appl. Phys. Lett. 89, 104105 (2006).
    [CrossRef]
  14. S. F. Hanna, W. D. Kulatilaka, Z. Arp, T. Opatrny, M. O. Scully, J. P. Kuehner, and R. P. Lucht, Appl. Phys. Lett. 83, 1887 (2003).
    [CrossRef]
  15. Y. Zhang, A. W. Brown, and M. Xiao, Opt. Lett. 32, 1120 (2007).
    [CrossRef] [PubMed]
  16. A. K. Patnaik and G. S. Agarwal, Opt. Commun. 179, 97 (2000).
    [CrossRef]

2007 (2)

V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, Phys. Rev. Lett. 99, 143601 (2007).
[CrossRef] [PubMed]

Y. Zhang, A. W. Brown, and M. Xiao, Opt. Lett. 32, 1120 (2007).
[CrossRef] [PubMed]

2006 (2)

S. Roy, W. D. Kulatilaka, S. V. Naik, N. M. Laurendeau, R. P. Lucht, and J. R. Gord, Appl. Phys. Lett. 89, 104105 (2006).
[CrossRef]

E. E. Mikhailov, V. A. Sautenkov, Y. V. Rostovtsev, A. Zhang, M. S. Zubairy, M. O. Scully, and G. R. Welch, Phys. Rev. A 74, 013807 (2006).
[CrossRef]

2004 (1)

T. H. Yoon, C. Y. Park, and S. J. Park, Phys. Rev. A 70, 061803 (2004).
[CrossRef]

2003 (1)

S. F. Hanna, W. D. Kulatilaka, Z. Arp, T. Opatrny, M. O. Scully, J. P. Kuehner, and R. P. Lucht, Appl. Phys. Lett. 83, 1887 (2003).
[CrossRef]

2001 (1)

A. K. Patnaik and G. S. Agarwal, Opt. Commun. 199, 127 (2001).
[CrossRef]

2000 (1)

A. K. Patnaik and G. S. Agarwal, Opt. Commun. 179, 97 (2000).
[CrossRef]

1998 (2)

S. Wielandy and A. L. Gaeta, Phys. Rev. Lett. 81, 3359 (1998).
[CrossRef]

S. E. Harris and Y. Yamamoto, Phys. Rev. Lett. 81, 3611 (1998).
[CrossRef]

1997 (2)

M. D. Lukin, M. Fleischhauer, A. S. Zibrov, H. G. Robinson, V. L. Velichansky, L. Hollberg, and M. O. Scully, Phys. Rev. Lett. 79, 2959 (1997).
[CrossRef]

S. E. Harris, Phys. Today 50, 36 (1997).
[CrossRef]

1996 (1)

1995 (1)

J. Gea-banacloche, Y. Li, S. Jin, and M. Xiao, Phys. Rev. A 51, 576 (1995).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

S. Roy, W. D. Kulatilaka, S. V. Naik, N. M. Laurendeau, R. P. Lucht, and J. R. Gord, Appl. Phys. Lett. 89, 104105 (2006).
[CrossRef]

S. F. Hanna, W. D. Kulatilaka, Z. Arp, T. Opatrny, M. O. Scully, J. P. Kuehner, and R. P. Lucht, Appl. Phys. Lett. 83, 1887 (2003).
[CrossRef]

Opt. Commun. (2)

A. K. Patnaik and G. S. Agarwal, Opt. Commun. 199, 127 (2001).
[CrossRef]

A. K. Patnaik and G. S. Agarwal, Opt. Commun. 179, 97 (2000).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (3)

E. E. Mikhailov, V. A. Sautenkov, Y. V. Rostovtsev, A. Zhang, M. S. Zubairy, M. O. Scully, and G. R. Welch, Phys. Rev. A 74, 013807 (2006).
[CrossRef]

J. Gea-banacloche, Y. Li, S. Jin, and M. Xiao, Phys. Rev. A 51, 576 (1995).
[CrossRef] [PubMed]

T. H. Yoon, C. Y. Park, and S. J. Park, Phys. Rev. A 70, 061803 (2004).
[CrossRef]

Phys. Rev. Lett. (4)

S. E. Harris and Y. Yamamoto, Phys. Rev. Lett. 81, 3611 (1998).
[CrossRef]

M. D. Lukin, M. Fleischhauer, A. S. Zibrov, H. G. Robinson, V. L. Velichansky, L. Hollberg, and M. O. Scully, Phys. Rev. Lett. 79, 2959 (1997).
[CrossRef]

V. Boyer, C. F. McCormick, E. Arimondo, and P. D. Lett, Phys. Rev. Lett. 99, 143601 (2007).
[CrossRef] [PubMed]

S. Wielandy and A. L. Gaeta, Phys. Rev. Lett. 81, 3359 (1998).
[CrossRef]

Phys. Today (1)

S. E. Harris, Phys. Today 50, 36 (1997).
[CrossRef]

Other (2)

R. W. Boyd, Nonlinear Optics (Elsevier, 2003).

Y. R. Shen, Principles of Nonlinear Optics (Wiley, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Diagram showing the Cs 133 energy levels. (b) Schematic of the experimental setup: P, polarizer; λ 2 , half-wave plate; λ 4 , quarter-wave plate; PD, photodiode detector; L, focal lens; BS, beam splitter; DF, dichroic color filter; PBS, polarized beam splitter.

Fig. 2
Fig. 2

One microwatt input probe field σ p + and a 29 mW drive field σ d couple the Cs atoms with atomic density N = 1.1 × 10 11 cm 3 . The transmission of the probe σ p + and the new generated field σ g varies with the input σ d + drive power.

Fig. 3
Fig. 3

Corresponding data from Fig. 2 when all fields (probe and two drive fields) are on resonance. The dashed curves are the theoretical plots using Eqs. (4, 5).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

z Ω p + = η Im [ ρ a b ] , z Ω g = η Im [ ρ a b ] .
Im [ ρ a b ] = Ω p + γ Ω d + 2 + 2 γ Γ Ω d + 2 + Ω d 2 + 2 γ Γ ,
Im [ ρ a b ] = Ω p + γ Ω d Ω * d + Ω d + 2 + Ω d 2 + 2 γ Γ ,
Ω p + ( z ) Ω p + ( 0 ) 1 η z Ω d + 2 + 2 γ Γ γ ( Ω d + 2 + Ω d 2 + 2 γ Γ ) ,
Ω g ( z ) Ω p + ( 0 ) η z Ω d Ω d + * γ ( Ω d + 2 + Ω d 2 + 2 γ Γ ) .

Metrics