Abstract

The generation of tailored femtosecond pulses with fully engineered intensity and phase profiles is demonstrated using second-harmonic generation of an Er:fiber laser in an aperiodically poled lithium niobate crystal in the undepleted pump regime. Second-harmonic pulse shapes, including Gaussian, stepped, square, and multiple pulses have been characterized using cross-correlation frequency-resolved optical gating and have been shown to agree well with theory.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, IEEE J. Quantum Electron. QE-28, 908 (1992).
    [CrossRef]
  2. E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, and G. Vdovin, Opt. Lett. 24, 493 (1999).
    [CrossRef]
  3. F. Verluise, V. Laude, Z. Cheng, C. Spielmann, and P. Tournois, Opt. Lett. 25, 575 (2000).
    [CrossRef]
  4. P. Petropoulos, M. Ibsen, A. D. Ellis, and D. J. Richardson, J. Lightwave Technol. 19, 746 (2001).
    [CrossRef]
  5. S. K. Turitsyn, V. K. Mezentsev, and E. G. Shapiro, Opt. Fiber Technol. 4, 384 (1998).
    [CrossRef]
  6. M. A. Arbore, A. Galvanauskas, D. Harter, M. H. Chou, and M. M. Fejer, Opt. Lett. 22, 1341 (1997).
    [CrossRef]
  7. G. Imeshev, A. Galvanauskas, D. Harter, M. A. Arbore, M. Proctor, and M. M. Fejer, Opt. Lett. 23, 864 (1998).
    [CrossRef]
  8. K. A. Tillman, D. T. Reid, D. Artigas, J. Hellström, V. Pasiskevicius, and F. Laurell, Opt. Lett. 28, 543 (2003).
    [CrossRef] [PubMed]
  9. D. T. Reid, J. Opt. A: Pure Appl. Opt. 5, S97 (2003).
    [CrossRef]
  10. U. K. Sapaev and D. T. Reid, Opt. Express 13, 3264 (2005).
    [CrossRef] [PubMed]
  11. M. A. Arbore, O. Marco, and M. M. Fejer, Opt. Lett. 22, 865 (1997).
    [CrossRef] [PubMed]
  12. L. E. Myers, in Advances in Lasers and Applications, D.M.Finlayson and B.D.Sinclair, eds. (Institute of Physics Publishing, 1999), pp. 141-180.

2005 (1)

2003 (2)

2001 (1)

2000 (1)

1999 (1)

1998 (2)

S. K. Turitsyn, V. K. Mezentsev, and E. G. Shapiro, Opt. Fiber Technol. 4, 384 (1998).
[CrossRef]

G. Imeshev, A. Galvanauskas, D. Harter, M. A. Arbore, M. Proctor, and M. M. Fejer, Opt. Lett. 23, 864 (1998).
[CrossRef]

1997 (2)

1992 (1)

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, IEEE J. Quantum Electron. QE-28, 908 (1992).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Input pulse spectrum (dotted gray curve and lower-wavelength axis) and the crystal transfer functions, E C R Y S ( λ ) (solid black curve and upper-wavelength axis) for the nine gratings used in the experiment. The results for gratings 1–9 are presented in (a)–(i), respectively.

Fig. 2
Fig. 2

Experimental configuration. Pulses from the Er:fiber oscillator are compressed and then focused into the APPLN crystal, where the second-harmonic light is generated. After collimation, the second-harmonic (SH) and the fundamental wave (FW) light enter an XFROG apparatus. A dichroic mirror (DM) that is highly reflecting at 765 nm and highly transmitting at 1530 nm forms the interferometer, and the nonlinear mixing occurs in a 100 μ m -thick BBO crystal. FW+SH denotes the sum-frequency beam resulting from nonlinear mixing in the BBO crystal. L1 and L2 are lenses with focal lengths of 100 mm and 15 mm , respectively. Inset; schematic of the APPLN crystal, and the target SH profiles designed assuming 150 fs Gaussian input pulses.

Fig. 3
Fig. 3

XFROG measurements of the second-harmonic pulses (solid thick curve, intensity; open circles, phase) and a comparison with the shapes calculated using the fundamental pulses (dotted thin curve, intensity; filled circles, phase), also determined by XFROG. The results for gratings 1–9 are presented in (a)–(i), respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

2 ( n 1 n 2 ) Δ Λ G λ 1 2 2 c L ( 1 v g 2 1 v g 1 ) 1 ,
E C R Y S ( ω ) = κ d i j k Δ k ( ω ) { 1 ( 1 ) n exp [ i Δ k ( ω ) Q n ] + m = 1 n 1 2 ( 1 ) m exp [ i Δ k ( ω ) Q m ] } ,
E O U T ( t ) = F 1 { F [ E I N 2 ( t ) ] E C R Y S ( ω ) } ,

Metrics