Abstract

We report on a universal method to achieve and sustain a large mode-hop-free tuning range of an external cavity diode laser based on a model of its mode-structure dynamics. Using this method, we were able to scan 73GHz mode-hop free by using an uncoated off-the-shelf laser diode with a central wavelength of 785nm. Our model applies to any laser system requiring synchronization of more than one optical element.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. T. M. Quist, R. H. Rediker, R. J. Keyes, W. E. Krag, B. Lax, A. L. McWhorter, and H. J. Zeigler, Appl. Phys. Lett. 1, 91 (1962).
    [CrossRef]
  2. M. I. Nathan, W. P. Dumke, G. Burns, F. H. Dill, Jr., and G. Lasher, Appl. Phys. Lett. 1, 62 (1962).
    [CrossRef]
  3. R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, Phys. Rev. Lett. 9, 366 (1962).
    [CrossRef]
  4. J. W. Crowe and R. M. Craig, Jr., Appl. Phys. Lett. 5, 72 (1964).
    [CrossRef]
  5. L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Kijnig, and T. Hänsch, Opt. Commun. 117, 541 (1995).
    [CrossRef]
  6. K. Liu and M. G. Littman, Opt. Lett. 6, 117 (1980).
    [CrossRef]
  7. C. E. Wieman and L. Hollberg, Rev. Sci. Instrum. 62, 1 (1991).
    [CrossRef]
  8. N. P. Barnes and J. C. Barnes, IEEE J. Quantum Electron. 29, 2670 (1993).
    [CrossRef]
  9. J. Hult, I. S. Burns, and C. F. Kaminski, Appl. Opt. 44, 3675 (2005).
    [CrossRef] [PubMed]
  10. T. N. Anderson, R. P. Lucht, R. Barron-Jimenez, S. F. Hanna, J. A. Caton, T. Walther, S. Roy, M. S. Brown, J. R. Gord, I. Critchley, and L. Flamand, Appl. Opt. 44, 1491 (2005).
    [CrossRef] [PubMed]
  11. A. Bösel, K.-D. Salewski, and T. Kinder, Opt. Lett. 32, 1956 (2007).
    [CrossRef] [PubMed]

2007 (1)

2005 (2)

1995 (1)

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Kijnig, and T. Hänsch, Opt. Commun. 117, 541 (1995).
[CrossRef]

1993 (1)

N. P. Barnes and J. C. Barnes, IEEE J. Quantum Electron. 29, 2670 (1993).
[CrossRef]

1991 (1)

C. E. Wieman and L. Hollberg, Rev. Sci. Instrum. 62, 1 (1991).
[CrossRef]

1980 (1)

1964 (1)

J. W. Crowe and R. M. Craig, Jr., Appl. Phys. Lett. 5, 72 (1964).
[CrossRef]

1962 (3)

T. M. Quist, R. H. Rediker, R. J. Keyes, W. E. Krag, B. Lax, A. L. McWhorter, and H. J. Zeigler, Appl. Phys. Lett. 1, 91 (1962).
[CrossRef]

M. I. Nathan, W. P. Dumke, G. Burns, F. H. Dill, Jr., and G. Lasher, Appl. Phys. Lett. 1, 62 (1962).
[CrossRef]

R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, Phys. Rev. Lett. 9, 366 (1962).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

T. M. Quist, R. H. Rediker, R. J. Keyes, W. E. Krag, B. Lax, A. L. McWhorter, and H. J. Zeigler, Appl. Phys. Lett. 1, 91 (1962).
[CrossRef]

M. I. Nathan, W. P. Dumke, G. Burns, F. H. Dill, Jr., and G. Lasher, Appl. Phys. Lett. 1, 62 (1962).
[CrossRef]

J. W. Crowe and R. M. Craig, Jr., Appl. Phys. Lett. 5, 72 (1964).
[CrossRef]

IEEE J. Quantum Electron. (1)

N. P. Barnes and J. C. Barnes, IEEE J. Quantum Electron. 29, 2670 (1993).
[CrossRef]

Opt. Commun. (1)

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Kijnig, and T. Hänsch, Opt. Commun. 117, 541 (1995).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, Phys. Rev. Lett. 9, 366 (1962).
[CrossRef]

Rev. Sci. Instrum. (1)

C. E. Wieman and L. Hollberg, Rev. Sci. Instrum. 62, 1 (1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Mode structure of the internal, external, and coupled resonator. The coupling coefficient c 0 describing the feedback characteristic of the grating ultimately selects the actual lasing wavelength.

Fig. 2
Fig. 2

Simplified view of the mode structure of the internal and external resonator. The FSRs of each resonator are shown at three distinct points in time during a wavelength scan. At point 3 a mode hop has occurred.

Fig. 3
Fig. 3

Plot of the solutions of Eq. (4) showing the position in time of the mode hops as a function of the tuning rate c int of the internal cavity. The tuning rate of the external resonator is held constant throughout the calculation, resulting in a change of ratio of the tuning rates.

Fig. 4
Fig. 4

Measurement of the mode-hop positions in time as a function of the slope of the laser diode current. The slope of the piezo actuator voltage remained constant for each measurement. The time for one scan was 40 ms .

Fig. 5
Fig. 5

Transmission signal of the high-finesse interferometer proving a mode-hop-free scan of 73 GHz . Peak separations correspond to a frequency change of 1 GHz . Also shown is the nonlinear ramp controlling the laser diode current. The dashed straight line is shown for reference only to demonstrate the deviation from a linear ramp. The repetition rate was 25 Hz . Ramp signals were asymmetric for the rising and falling slopes.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

T = 1 1 + F sin 2 ( δ 2 ) ,
FSR int ( ext ) ( t ) = c int ( ext ) t + FSR int ( ext ) ( t 0 ) ,
Δ ν peak ( t ) = FSR ext ( t ) 2
Δ ν peak ( t ) = FSR int ( t ) FSR int ( t ) FSR ext ( t ) FSR ext ( t )

Metrics