Abstract

Diffractive axicons are optical components producing achromatic nondiffracting beams. They thus produce a focal line rather than a focal point for classical lenses. This gives the interesting property of a long focal depth. We show that this property can be used to design a simple imaging system with a linear variable zoom by using and translating a diffractive axicon as the only optical component.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. H. McLeod, J. Opt. Soc. Am. 44, 592 (1954).
    [CrossRef]
  2. J. Durnin, J. Opt. Soc. Am. A 4, 651 (1987).
    [CrossRef]
  3. G. Druart, N. Guérineau, R. Haïdar, J. Primot, P. Chavel, and J. Taboury, J. Opt. Soc. Am. A 24, 3379 (2007).
    [CrossRef]
  4. A. V. Goncharov, A. Burvall, and C. Dainty, Appl. Opt. 46, 6076 (2007).
    [CrossRef] [PubMed]
  5. R. Arimoto, C. Saloma, T. Tanaka, and S. Kawata, Appl. Opt. 31, 6653 (1992).
    [CrossRef] [PubMed]
  6. Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, Opt. Lett. 27, 243 (2002).
    [CrossRef]
  7. B. Shao, S. C. Esener, J. M. Nascimento, E. L. Botvinick, and M. W. Berns, Appl. Opt. 45, 6421 (2006).
    [CrossRef] [PubMed]
  8. J. Dyson, Proc. R. Soc. London, Ser. A 248, 93 (1958).
    [CrossRef]
  9. M. V. Pérez, C. Gómez-Reino, and J. M. Cuadrando, Opt. Acta 33, 1161 (1986).
    [CrossRef]
  10. L. M. Soroko, in Progress in Optics, E.Wolf, ed. (Elsevier, 1989), Vol. 27, p. 111.
    [CrossRef]
  11. A. Thaning, Z. Jaroszewicz, and A. T. Friberg, Appl. Opt. 42, 9 (2003).
    [CrossRef] [PubMed]
  12. G. Mikula, A. Kolodziejczyk, M. Makowoski, C. Prokopowicz, and M. Sypek, Opt. Eng. 44, 058001 (2005).
    [CrossRef]
  13. N. Guérineau, B. Harchaoui, J. Primot, and K. Heggarty, Opt. Lett. 26, 411 (2001).
    [CrossRef]

2007

2006

2005

G. Mikula, A. Kolodziejczyk, M. Makowoski, C. Prokopowicz, and M. Sypek, Opt. Eng. 44, 058001 (2005).
[CrossRef]

2003

2002

2001

1992

1987

1986

M. V. Pérez, C. Gómez-Reino, and J. M. Cuadrando, Opt. Acta 33, 1161 (1986).
[CrossRef]

1958

J. Dyson, Proc. R. Soc. London, Ser. A 248, 93 (1958).
[CrossRef]

1954

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Scheme of the experimental setup. The USAF resolution target is represented in the bottom left-hand corner. The bars in the dotted box form element 1 of group 4 .

Fig. 2
Fig. 2

Illustration of the zoom capability: restored images of the USAF resolution target placed at a distance of 3 m from the axicon-based optical system with f equal to (a) 37 mm or (b) 88 mm and at a distance of 1.3 m with f equal to (c) 37 mm . (a) and (b), Illustration of the magnification effect; (b) and (c), illustration of the z-invariance focal line.

Fig. 3
Fig. 3

Profile of the high-pass filter in the frequency domain used to restore the contrast of the images.

Tables (1)

Tables Icon

Table 1 Comparison between the Maximal Angular Dimension θ max of the USAF Target and the Ideal FOV of the Optical System

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ν c = 2 d .
α c = 0.75 d ( λ f ) ,
ν USAF = ( L f ) × 2 group + [ ( element 1 ) ] 6 .

Metrics