Abstract

We demonstrate the possibility of three-dimensional optical data storage inside a specific zinc phosphate glass containing silver by using third-harmonic generation (THG) imaging. Information is stored inside the glass with femtosecond laser irradiation below the refractive index modification threshold. We use the same laser for THG readout. The capability of storage with this technique is discussed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. G. A. Rakuljic, V. Leyva, and A. Yariv, Opt. Lett. 17, 1471 (1992).
    [CrossRef] [PubMed]
  2. F. H. Mok, Opt. Lett. 18, 915 (1993).
    [CrossRef] [PubMed]
  3. D. Psaltis, M. Levene, A. Pu, and G. Barbastathis, Opt. Lett. 20, 782 (1995).
    [CrossRef] [PubMed]
  4. X. Li, C. Bullen, J. W. M. Chon, R. A. Evans, and M. Gu, Appl. Phys. Lett. 90, 161116 (2007).
    [CrossRef]
  5. J. H. Strickler and W. W. Webb, Opt. Lett. 16, 1780 (1991).
    [CrossRef] [PubMed]
  6. S. Pan, A. Shih, W. Liou, M. Park, J. Bhawalkar, J. Swiatkiewicz, J. Samarabandu, P. N. Prasad, and P. C. Cheng, Scanning 19, 156 (1997).
  7. D. Day and M. Gu, Appl. Opt. 37, 6299 (1998).
    [CrossRef]
  8. H. Jiu, H. Tang, J. Zhou, J. Xu, Q. Zhang, H. Xing, W. Huang, and A. Xia, Opt. Lett. 30, 774 (2005).
    [CrossRef] [PubMed]
  9. J. A. Squier and M. Müller, Appl. Opt. 38, 5789 (1999).
    [CrossRef]
  10. A. Dmitryuk, S. Parmzina, A. Perminov, N. Solov'eva, and N. Timofeev, J. Non-Cryst. Solids 202, 173 (1996).
    [CrossRef]
  11. I. Belharouak, C. Parent, B. Tanguy, G. Le Flem, and M. Couzi, J. Non-Cryst. Solids 244, 238 (1999).
    [CrossRef]
  12. A. Brocas, L. Canioni, and L. Sarger, Opt. Express 12, 2317 (2004).
    [CrossRef] [PubMed]
  13. Y. Dai, X. Hu, C. Wang, D. Chen, X. Jiang, C. Zhu, B. Yu, and J. Qiu, Chem. Phys. Lett. 439, 81 (2007).
    [CrossRef]
  14. V. M. Syutkin, A. V. Dmitryuk, and V. A. Tolkachev, Fiz. Khim. Stekla 18, 66 (1992).
  15. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).
  16. R. Barille, L. Canioni, L. Sarger, and G. Rivoire, Phys. Rev. E 66, 067602 (2002).
    [CrossRef]
  17. J. Chen and S. Xie, J. Opt. Soc. Am. B 19, 1604 (2002).
    [CrossRef]

2007 (2)

X. Li, C. Bullen, J. W. M. Chon, R. A. Evans, and M. Gu, Appl. Phys. Lett. 90, 161116 (2007).
[CrossRef]

Y. Dai, X. Hu, C. Wang, D. Chen, X. Jiang, C. Zhu, B. Yu, and J. Qiu, Chem. Phys. Lett. 439, 81 (2007).
[CrossRef]

2005 (1)

2004 (1)

2002 (2)

R. Barille, L. Canioni, L. Sarger, and G. Rivoire, Phys. Rev. E 66, 067602 (2002).
[CrossRef]

J. Chen and S. Xie, J. Opt. Soc. Am. B 19, 1604 (2002).
[CrossRef]

1999 (2)

I. Belharouak, C. Parent, B. Tanguy, G. Le Flem, and M. Couzi, J. Non-Cryst. Solids 244, 238 (1999).
[CrossRef]

J. A. Squier and M. Müller, Appl. Opt. 38, 5789 (1999).
[CrossRef]

1998 (1)

1997 (1)

S. Pan, A. Shih, W. Liou, M. Park, J. Bhawalkar, J. Swiatkiewicz, J. Samarabandu, P. N. Prasad, and P. C. Cheng, Scanning 19, 156 (1997).

1996 (1)

A. Dmitryuk, S. Parmzina, A. Perminov, N. Solov'eva, and N. Timofeev, J. Non-Cryst. Solids 202, 173 (1996).
[CrossRef]

1995 (1)

1993 (1)

1992 (2)

G. A. Rakuljic, V. Leyva, and A. Yariv, Opt. Lett. 17, 1471 (1992).
[CrossRef] [PubMed]

V. M. Syutkin, A. V. Dmitryuk, and V. A. Tolkachev, Fiz. Khim. Stekla 18, 66 (1992).

1991 (1)

Appl. Opt. (2)

Appl. Phys. Lett. (1)

X. Li, C. Bullen, J. W. M. Chon, R. A. Evans, and M. Gu, Appl. Phys. Lett. 90, 161116 (2007).
[CrossRef]

Chem. Phys. Lett. (1)

Y. Dai, X. Hu, C. Wang, D. Chen, X. Jiang, C. Zhu, B. Yu, and J. Qiu, Chem. Phys. Lett. 439, 81 (2007).
[CrossRef]

Fiz. Khim. Stekla (1)

V. M. Syutkin, A. V. Dmitryuk, and V. A. Tolkachev, Fiz. Khim. Stekla 18, 66 (1992).

J. Non-Cryst. Solids (2)

A. Dmitryuk, S. Parmzina, A. Perminov, N. Solov'eva, and N. Timofeev, J. Non-Cryst. Solids 202, 173 (1996).
[CrossRef]

I. Belharouak, C. Parent, B. Tanguy, G. Le Flem, and M. Couzi, J. Non-Cryst. Solids 244, 238 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (5)

Phys. Rev. E (1)

R. Barille, L. Canioni, L. Sarger, and G. Rivoire, Phys. Rev. E 66, 067602 (2002).
[CrossRef]

Scanning (1)

S. Pan, A. Shih, W. Liou, M. Park, J. Bhawalkar, J. Swiatkiewicz, J. Samarabandu, P. N. Prasad, and P. C. Cheng, Scanning 19, 156 (1997).

Other (1)

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Microscopy imaging of laser-induced species following the experimental map sketch (a) (x axis, laser intensity; y axis, number of laser pulses, 6 × 5 bits pattern; spacing, 20 μ m ). (b) Epiwhite light microscopy image reveals linear refractive index modifications; vertical dashed line, damage threshold. (c) Epifluorescence microscopy image (excitation wavelength, 365 nm ; emission filter, 610 ± 40 nm ); slanted dashed line, threshold corresponding to induced fluorescent species. (d) THG image (excitation wavelength, 1030 nm ; emission filter, 350 ± 50 nm ); slanted dashed line, THG threshold; encircled area, data storage irradiation conditions ( I = 6 × 10 12 W cm 2 , N = 10 6 ).

Fig. 2
Fig. 2

(a) Differential absorbance spectrum between the irradiated and nonirradiated regions; (b) emission spectrum (excitation wavelength, 365 nm ) of the irradiated region. Experimental laser irradiation conditions: I = 6 × 10 12 W cm 2 , N = 10 6 . Differential absorbance and emission spectra are assigned to laser induced Ag clusters.

Fig. 3
Fig. 3

THG readout of the three layers containing the bit patterns U, B, and 1, recorded in the bulk of the glass (bit spacing, 3 μ m ; layer spacing, 10 μ m ). Laser writing parameters: I = 6 × 10 12 W cm 2 , N = 10 6 . The three THG images present high signal-to-noise ratio and no cross talk.

Metrics