Abstract

We present a novel method to phase lock two lasers with a controllable frequency difference. A microwave frequency-modulated vertical-cavity surface-emitting laser is used to phase connect two diode lasers by a two-step injection locking. The phase fluctuations of the two lasers are measured to be 6.4×104rad2, corresponding to 99.94% phase coherence. The frequency difference of the two lasers is tunable up to tens of gigahertz. The sideband suppression of the slave laser is more than 30dB at 30μW seed power. A narrow linewidth spectrum of coherent population trapping in rubidium is achieved using such beams.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. V. Shah, S. Knappe, L. Hollberg, and J. Kitching, Opt. Lett. 32, 1244 (2007).
    [CrossRef] [PubMed]
  2. H. S. Moon, S. E. Park, Y. Park, L. Lee, and J. B. Kim, J. Opt. Soc. Am. B 23, 2393 (2006).
    [CrossRef]
  3. M. D. Eisaman, A. Andre, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, Nature 438, 837 (2005).
    [CrossRef] [PubMed]
  4. M. Kasevich and S. Chu, Phys. Rev. Lett. 69, 1741 (1992).
    [CrossRef] [PubMed]
  5. J. Ye and J. L. Hall, Opt. Lett. 24, 1838 (1999).
    [CrossRef]
  6. M. S. Shahriar, A. V. Turukhin, T. Liptay, Y. Tan, and P. R. Hemmer, Opt. Commun. 184, 457 (2000).
    [CrossRef]
  7. I. Dotsenko, W. Alt, S. Kuhr, D. Schrader, M. Müller, Y. Miroshnychenko, V. Gomer, A. Rauschenbeutel, and D. Meschede, Appl. Phys. B 78, 711 (2004).
    [CrossRef]
  8. S. E. Park, T. Y. Kwon, and H. S. Lee, IEEE Trans. Instrum. Meas. 52, 277 (2003).
    [CrossRef]
  9. M. J. Snadden, R. B. M. Clarke, and E. Riis, Opt. Lett. 22, 892 (1997).
    [CrossRef] [PubMed]
  10. M. Lackner, G. Totschnig, F. Winter, M. Ortsiefer, M. C. Amann, R. Shau, and J. Rosskopf, Meas. Sci. Technol. 14, 101 (2003).
    [CrossRef]
  11. G. Shtengel, H. Temkin, P. Brusenbach, T. Uchida, M. Kim, C. Parsons, W. E. Quinn, and S. E. Swirhun, IEEE Photon. Technol. Lett. 5, 1359 (1993).
    [CrossRef]
  12. M. Stähler, R. Wynands, S. Knappe, J. Kitching, L. Hollberg, A. Taichenachev, and V. Yudin, Opt. Lett. 27, 1472 (2002).
    [CrossRef]

2007 (1)

2006 (1)

2005 (1)

M. D. Eisaman, A. Andre, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, Nature 438, 837 (2005).
[CrossRef] [PubMed]

2004 (1)

I. Dotsenko, W. Alt, S. Kuhr, D. Schrader, M. Müller, Y. Miroshnychenko, V. Gomer, A. Rauschenbeutel, and D. Meschede, Appl. Phys. B 78, 711 (2004).
[CrossRef]

2003 (2)

S. E. Park, T. Y. Kwon, and H. S. Lee, IEEE Trans. Instrum. Meas. 52, 277 (2003).
[CrossRef]

M. Lackner, G. Totschnig, F. Winter, M. Ortsiefer, M. C. Amann, R. Shau, and J. Rosskopf, Meas. Sci. Technol. 14, 101 (2003).
[CrossRef]

2002 (1)

2000 (1)

M. S. Shahriar, A. V. Turukhin, T. Liptay, Y. Tan, and P. R. Hemmer, Opt. Commun. 184, 457 (2000).
[CrossRef]

1999 (1)

1997 (1)

1993 (1)

G. Shtengel, H. Temkin, P. Brusenbach, T. Uchida, M. Kim, C. Parsons, W. E. Quinn, and S. E. Swirhun, IEEE Photon. Technol. Lett. 5, 1359 (1993).
[CrossRef]

1992 (1)

M. Kasevich and S. Chu, Phys. Rev. Lett. 69, 1741 (1992).
[CrossRef] [PubMed]

Appl. Phys. B (1)

I. Dotsenko, W. Alt, S. Kuhr, D. Schrader, M. Müller, Y. Miroshnychenko, V. Gomer, A. Rauschenbeutel, and D. Meschede, Appl. Phys. B 78, 711 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

G. Shtengel, H. Temkin, P. Brusenbach, T. Uchida, M. Kim, C. Parsons, W. E. Quinn, and S. E. Swirhun, IEEE Photon. Technol. Lett. 5, 1359 (1993).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

S. E. Park, T. Y. Kwon, and H. S. Lee, IEEE Trans. Instrum. Meas. 52, 277 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

M. Lackner, G. Totschnig, F. Winter, M. Ortsiefer, M. C. Amann, R. Shau, and J. Rosskopf, Meas. Sci. Technol. 14, 101 (2003).
[CrossRef]

Nature (1)

M. D. Eisaman, A. Andre, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, Nature 438, 837 (2005).
[CrossRef] [PubMed]

Opt. Commun. (1)

M. S. Shahriar, A. V. Turukhin, T. Liptay, Y. Tan, and P. R. Hemmer, Opt. Commun. 184, 457 (2000).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. Lett. (1)

M. Kasevich and S. Chu, Phys. Rev. Lett. 69, 1741 (1992).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup for generating phase-coherent laser beams using a VCSEL and obtaining a CPT spectrum. ISO, isolator; λ 2 , half-wave plate; PBS, polarizing beam splitter; BS, beam splitter; NDF, neutral density filter; λ 4 , quarter-wave plate; PD, PIN photodiode. The inset shows the CPT spectrum of the 5 S 1 2 5 P 3 2 transition of Rb 87 obtained with the two beams. The linewidth of the CPT spectrum is 800 Hz .

Fig. 2
Fig. 2

Analysis of the beat between master (shifted by 110 MHz in an AOM) and locked slave. (a) Beat note spectrum at 6.6 GHz with a 100 Hz span, 1 Hz resolution bandwidth (RBW), and 1 Hz video bandwidth (VBW). (b) Allan variance of the phase fluctuation. (c) Beat note spectrum with 14 GHz span, 10 KHz RBW, and 1 KHz VBW. The power of the beat note between the master and slave carriers is 30 dB higher than that between the master and slave sidebands.

Fig. 3
Fig. 3

Locking range of the VCSEL as a function of current modulation power and injection seed power. (a) Locking range increases with the enhancement of modulation power (stars) and thus fractional laser power in the first-order upper sideband (solid circles) when the seed power is fixed at 6.4 μ W . (b) Locking range as a function of seed power when modulation power is 3 dBm .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ 2 ( τ ) = 1 τ 2 [ ϕ ( t + τ ) ϕ ( t ) ] 2 t .

Metrics