Abstract

We demonstrated near-infrared light imaging of stimulus-modulated physiological activities in an isolated frog retina using transient intrinsic optical responses (TIORs). While low-strength visible-light stimuli evoked TIORs with positive polarity, strengthened stimuli elicited additional negative TIORs. Our experimental study and physiological analysis suggest that the negative TIORs are associated with photoreceptor response, and the positive TIORs result primarily from dynamic changes of postphotoreceptor response during retinal activation. In coordination with the sophisticated design of visible-light stimulation protocols, optical imaging of TIORs promises an important application for noninvasive assessment of retinal photoreceptor and inner neurons.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. I. Perlman, Br. J. Ophthamol. 67, 443 (1983).
    [CrossRef]
  2. C. J. Dong and W. A. Hare, Vision Res. 40, 579 (2000).
    [CrossRef] [PubMed]
  3. Y. Han, M. A. Bearse Jr., M. E. Schneck, S. Barez, C. H. Jacobsen, and A. J. Adams, Invest. Ophthalmol. Visual Sci. 45, 948 (2004).
    [CrossRef]
  4. X. C. Yao and J. S. George, Neuroimage 33, 898 (2006).
    [CrossRef] [PubMed]
  5. X. C. Yao and J. S. George, J. Biomed. Opt. 11, 064030 (2006).
    [CrossRef]
  6. K. Tsunoda, Y. Oguchi, G. Hanazono, and M. Tanifuji, Invest. Ophthalmol. Visual Sci. 45, 3820 (2004).
    [CrossRef]
  7. H. H. Harary, J. E. Brown, and L. H. Pinto, Science 202, 1083 (1978).
    [CrossRef] [PubMed]
  8. T. Akimoto, Vision Res. 22, 1093 (1982).
    [CrossRef] [PubMed]
  9. D. R. Pepperberg, M. Kahlert, A. Krause, and K. P. Hofmann, Proc. Natl. Acad. Sci. USA 85, 5531 (1988).
    [CrossRef] [PubMed]
  10. S. M. Dawis and M. Rossetto, Visual Neurosci. 10, 687 (1993).
    [CrossRef]
  11. V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, Opt. Lett. 31, 2308 (2006).
    [CrossRef] [PubMed]
  12. K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, Proc. Natl. Acad. Sci. USA 103, 5066 (2006).
    [CrossRef] [PubMed]
  13. X. C. Yao, A. Yamauchi, B. Perry, and J. S. George, Appl. Opt. 44, 2019 (2005).
    [CrossRef] [PubMed]
  14. D. A. Baylor and A. L. Hodgkin, J. Physiol. (London) 242, 729 (1974).
  15. M. Mizunami, J. Gen. Physiol. 95, 297 (1990).
    [CrossRef] [PubMed]
  16. T. D. Lamb and E. N. Pugh Jr., J. Physiol. (London) 449, 719 (1992).

2006

X. C. Yao and J. S. George, Neuroimage 33, 898 (2006).
[CrossRef] [PubMed]

X. C. Yao and J. S. George, J. Biomed. Opt. 11, 064030 (2006).
[CrossRef]

V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, Opt. Lett. 31, 2308 (2006).
[CrossRef] [PubMed]

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, Proc. Natl. Acad. Sci. USA 103, 5066 (2006).
[CrossRef] [PubMed]

2005

2004

K. Tsunoda, Y. Oguchi, G. Hanazono, and M. Tanifuji, Invest. Ophthalmol. Visual Sci. 45, 3820 (2004).
[CrossRef]

Y. Han, M. A. Bearse Jr., M. E. Schneck, S. Barez, C. H. Jacobsen, and A. J. Adams, Invest. Ophthalmol. Visual Sci. 45, 948 (2004).
[CrossRef]

2000

C. J. Dong and W. A. Hare, Vision Res. 40, 579 (2000).
[CrossRef] [PubMed]

1993

S. M. Dawis and M. Rossetto, Visual Neurosci. 10, 687 (1993).
[CrossRef]

1992

T. D. Lamb and E. N. Pugh Jr., J. Physiol. (London) 449, 719 (1992).

1990

M. Mizunami, J. Gen. Physiol. 95, 297 (1990).
[CrossRef] [PubMed]

1988

D. R. Pepperberg, M. Kahlert, A. Krause, and K. P. Hofmann, Proc. Natl. Acad. Sci. USA 85, 5531 (1988).
[CrossRef] [PubMed]

1983

I. Perlman, Br. J. Ophthamol. 67, 443 (1983).
[CrossRef]

1982

T. Akimoto, Vision Res. 22, 1093 (1982).
[CrossRef] [PubMed]

1978

H. H. Harary, J. E. Brown, and L. H. Pinto, Science 202, 1083 (1978).
[CrossRef] [PubMed]

1974

D. A. Baylor and A. L. Hodgkin, J. Physiol. (London) 242, 729 (1974).

Appl. Opt.

Br. J. Ophthamol.

I. Perlman, Br. J. Ophthamol. 67, 443 (1983).
[CrossRef]

Invest. Ophthalmol. Visual Sci.

Y. Han, M. A. Bearse Jr., M. E. Schneck, S. Barez, C. H. Jacobsen, and A. J. Adams, Invest. Ophthalmol. Visual Sci. 45, 948 (2004).
[CrossRef]

K. Tsunoda, Y. Oguchi, G. Hanazono, and M. Tanifuji, Invest. Ophthalmol. Visual Sci. 45, 3820 (2004).
[CrossRef]

J. Biomed. Opt.

X. C. Yao and J. S. George, J. Biomed. Opt. 11, 064030 (2006).
[CrossRef]

J. Gen. Physiol.

M. Mizunami, J. Gen. Physiol. 95, 297 (1990).
[CrossRef] [PubMed]

J. Physiol. (London)

T. D. Lamb and E. N. Pugh Jr., J. Physiol. (London) 449, 719 (1992).

D. A. Baylor and A. L. Hodgkin, J. Physiol. (London) 242, 729 (1974).

Neuroimage

X. C. Yao and J. S. George, Neuroimage 33, 898 (2006).
[CrossRef] [PubMed]

Opt. Lett.

Proc. Natl. Acad. Sci. USA

K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, Proc. Natl. Acad. Sci. USA 103, 5066 (2006).
[CrossRef] [PubMed]

D. R. Pepperberg, M. Kahlert, A. Krause, and K. P. Hofmann, Proc. Natl. Acad. Sci. USA 85, 5531 (1988).
[CrossRef] [PubMed]

Science

H. H. Harary, J. E. Brown, and L. H. Pinto, Science 202, 1083 (1978).
[CrossRef] [PubMed]

Vision Res.

T. Akimoto, Vision Res. 22, 1093 (1982).
[CrossRef] [PubMed]

C. J. Dong and W. A. Hare, Vision Res. 40, 579 (2000).
[CrossRef] [PubMed]

Visual Neurosci.

S. M. Dawis and M. Rossetto, Visual Neurosci. 10, 687 (1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Functional images of TIORs in an activated frog retina. Raw CCD images were acquired at 80   frames s . The exposure time of the CCD camera was 1 ms . (a) Representative raw picture of the isolated retina. (b) Image of the white light stimulus pattern, collected by removing the visible blocking filters in the NIR imaging path and replacing the sample with a mirror. Note that only the retinal area covered by the stimulus pattern was directly stimulated by the visible light. (c) Functional imaging sequence of TIORs with low strength stimulus. The retina was activated by a white light flash with optical energy of 8 × 10 6 μ J . (d) Functional imaging sequence of TIORs with strengthened stimulus. The same retina was activated by a white light flash with energy of 8 × 10 2 μ J . Each image of (c) and (d) was an average over 1 s interval (80 frames). Light stimulus was delivered at the time indicated by the arrows, and 2 s of prestimulus baseline images are shown in each sequence.

Fig. 2
Fig. 2

TIORs elicited by variable strength stimuli. Left: M-sequence images of TIORs. Right: Black traces and gray traces represent temporal changes of averaged TIORs of the stimulus covered retinal area [the area between the two longitudinal dashed lines indicated in the left of panel (a)] and not stimulus covered area, respectively. Raw CCD images were acquired at 80   frames s . The exposure time of the CCD camera was 1 ms . Irradiances of the visible light stimuli were (a) 8 × 10 6 , (b) 8 × 10 5 , (c) 8 × 10 4 , (d) 8 × 10 3 , and (e) 8 × 10 2 μ J , respectively. The top image sequence, (a) was recorded first, and the following sequences were recorded at 2 min intervals. The vertical gray lines indicate the delivery time of the stimuli. Gray and black arrows in the right panels indicate amplitude peaks of positive and negative TIORs, respectively.

Metrics