Abstract

A laser Doppler vibrometer (LDV) is described in which holographic optical elements are used to provide the interferometer reference and object illumination beams. A complementary metal-oxide semiconductor camera, incorporating a digital signal processor, is used to carry out real-time signal processing of the interferometer output to allow multipoint LDV to be implemented.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. P. Castellini, G. M. Revel, and E. P. Tomasini, Shock Vib. 30, 443 (1998).
    [CrossRef]
  2. L. E. Drain, The Laser Doppler Technique (Wiley, 1980).
  3. J.-R. Huang, H. D. Ford, and R. P. Tatam, Meas. Sci. Technol. 7, 1721 (1996).
    [CrossRef]
  4. P. Egan, M. J. Connelly, F. Lakestani, and M. P. Whelan, Opt. Lett. 31, 912 (2006).
    [CrossRef] [PubMed]
  5. P. Egan, F. Lakestani, M. P. Whelan, and M. J. Connelly, Opt. Eng. 45, 015601 (2006).
    [CrossRef]
  6. S. R. Guntaka, V. Toal, and S. Martin, Appl. Opt. 41, 7475 (2002).
    [CrossRef] [PubMed]
  7. www.photoformulary.com/uploads/04-3040.pdf.
  8. S. Martin, C. A. Feely, and V. Toal, Appl. Opt. 36, 5757 (1997).
    [CrossRef] [PubMed]
  9. S. Martin, P. E. L. G. Leclere, Y. Renotte, V. Toal, and Y. Lyon, Opt. Eng. 33, 3942 (1994).
    [CrossRef]
  10. J. A. Cole, B. A. Danver, and J. A. Bucaro, IEEE J. Quantum Electron. 18, 694 (1982).
    [CrossRef]

2006 (2)

P. Egan, F. Lakestani, M. P. Whelan, and M. J. Connelly, Opt. Eng. 45, 015601 (2006).
[CrossRef]

P. Egan, M. J. Connelly, F. Lakestani, and M. P. Whelan, Opt. Lett. 31, 912 (2006).
[CrossRef] [PubMed]

2002 (1)

1998 (1)

P. Castellini, G. M. Revel, and E. P. Tomasini, Shock Vib. 30, 443 (1998).
[CrossRef]

1997 (1)

1996 (1)

J.-R. Huang, H. D. Ford, and R. P. Tatam, Meas. Sci. Technol. 7, 1721 (1996).
[CrossRef]

1994 (1)

S. Martin, P. E. L. G. Leclere, Y. Renotte, V. Toal, and Y. Lyon, Opt. Eng. 33, 3942 (1994).
[CrossRef]

1982 (1)

J. A. Cole, B. A. Danver, and J. A. Bucaro, IEEE J. Quantum Electron. 18, 694 (1982).
[CrossRef]

Appl. Opt. (2)

IEEE J. Quantum Electron. (1)

J. A. Cole, B. A. Danver, and J. A. Bucaro, IEEE J. Quantum Electron. 18, 694 (1982).
[CrossRef]

Meas. Sci. Technol. (1)

J.-R. Huang, H. D. Ford, and R. P. Tatam, Meas. Sci. Technol. 7, 1721 (1996).
[CrossRef]

Opt. Eng. (2)

P. Egan, F. Lakestani, M. P. Whelan, and M. J. Connelly, Opt. Eng. 45, 015601 (2006).
[CrossRef]

S. Martin, P. E. L. G. Leclere, Y. Renotte, V. Toal, and Y. Lyon, Opt. Eng. 33, 3942 (1994).
[CrossRef]

Opt. Lett. (1)

Shock Vib. (1)

P. Castellini, G. M. Revel, and E. P. Tomasini, Shock Vib. 30, 443 (1998).
[CrossRef]

Other (2)

L. E. Drain, The Laser Doppler Technique (Wiley, 1980).

www.photoformulary.com/uploads/04-3040.pdf.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Recording a RHOE.

Fig. 2
Fig. 2

Recording a THOE.

Fig. 3
Fig. 3

LDV system.

Fig. 4
Fig. 4

2.22 kHz interferometer signal (upper trace) and drive signal (lower trace).

Fig. 5
Fig. 5

Customized software showing the demodulation algorithm settings and the retrieved 100 Hz vibration power spectrum at a single pixel corresponding to a particular point on the vibrating object. Because of the limited frequency resolution of the signal processing, the detected frequency is 97.7 Hz .

Metrics