Abstract

Gain band expansion of a Raman amplifier based on a Raman fiber oscillator (RFO) was tested with two Raman lasers, which yielded a broad gain spectrum of about 40nm. However, they also introduced gain-clamping behavior in the short-wavelength range and abnormal excessive gain in long-wavelength channels, which were undesirable for practical application. The proper mechanism of the behavior was analyzed and experimentally demonstrated to apply to a gain-clamped (GC) amplifier based on a RFO. Appropriate configuration of the GC-RFO for wide gain bandwidth was proposed and characterized.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. K. Inoue, IEEE Photon. Technol. Lett. 11, 1108 (1999).
    [CrossRef]
  2. H. S. Chung, H. H. Lee, J. C. Lee, M. J. Chu, and J. H. Lee, Electron. Lett. 38, 215 (2002).
    [CrossRef]
  3. S. S.-H. Yam, M. E. Marhic, Y. Akasaka, K. Shimizu, N. Kikuchi, and L. G. Kazovsky, IEEE Photon. Technol. Lett. 16, 1456 (2004).
    [CrossRef]
  4. H. S. Seo, J. T. Ahn, B. J. Park, and W. J. Chung, Electron. Lett. 43, 801 (2007).
    [CrossRef]
  5. J. T. Ahn, H. S. Seo, B. J. Park, and K. H. Kim, IEEE Photon. Technol. Lett. 19, 1898 (2007).
    [CrossRef]

2007 (2)

H. S. Seo, J. T. Ahn, B. J. Park, and W. J. Chung, Electron. Lett. 43, 801 (2007).
[CrossRef]

J. T. Ahn, H. S. Seo, B. J. Park, and K. H. Kim, IEEE Photon. Technol. Lett. 19, 1898 (2007).
[CrossRef]

2004 (1)

S. S.-H. Yam, M. E. Marhic, Y. Akasaka, K. Shimizu, N. Kikuchi, and L. G. Kazovsky, IEEE Photon. Technol. Lett. 16, 1456 (2004).
[CrossRef]

2002 (1)

H. S. Chung, H. H. Lee, J. C. Lee, M. J. Chu, and J. H. Lee, Electron. Lett. 38, 215 (2002).
[CrossRef]

1999 (1)

K. Inoue, IEEE Photon. Technol. Lett. 11, 1108 (1999).
[CrossRef]

Electron. Lett. (2)

H. S. Chung, H. H. Lee, J. C. Lee, M. J. Chu, and J. H. Lee, Electron. Lett. 38, 215 (2002).
[CrossRef]

H. S. Seo, J. T. Ahn, B. J. Park, and W. J. Chung, Electron. Lett. 43, 801 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

J. T. Ahn, H. S. Seo, B. J. Park, and K. H. Kim, IEEE Photon. Technol. Lett. 19, 1898 (2007).
[CrossRef]

S. S.-H. Yam, M. E. Marhic, Y. Akasaka, K. Shimizu, N. Kikuchi, and L. G. Kazovsky, IEEE Photon. Technol. Lett. 16, 1456 (2004).
[CrossRef]

K. Inoue, IEEE Photon. Technol. Lett. 11, 1108 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for the wideband amplifier based on an RFO scheme.

Fig. 2
Fig. 2

(a) Energy transfer mechanism between two internal Raman lasers. (b) Gain dynamics in the wideband RFO operated by 1510 and 1530 nm Raman lasers. Clamped gain for the 1620 nm signals and abnormal excess gain for the 1640 nm signals were measured.

Fig. 3
Fig. 3

Gain dynamics for signal powers at 1620 nm in a single-stage GC-RFO. The clamped gain depends on the VOA loss imposed on the GC laser. The Raman laser and the gain-clamped laser were generated near 1510 and 1560 nm , respectively.

Fig. 4
Fig. 4

Gain and noise figure versus signal power at 1620 nm in the two stage GC-RFO. The solid circles were obtained with the VOA 1 (first stage) and 2 (second stage) of 2.6 and 3.0 dB , respectively, and the triangles were achieved with 2.5 and 2.6 dB , respectively. The inset diagram shows the configuration of the two-stage GC-RFO. OSA, optical spectrum analyzer.

Fig. 5
Fig. 5

Gain versus signal power for each wavelength in the two-stage GC-RFO. The VOA losses were 2.5 and 2.6 dB for VOA 1 and 2, respectively. The dynamic ranges corresponding to each wavelength are almost 0 dBm .

Fig. 6
Fig. 6

Bit error rate (BER) versus receiver power for 20 and 25 dB gain with 10 Gbits s non-return-to-zero data.

Metrics