Abstract

We show experimentally optical bistability and the existence of bright and dark resonator solitons in the strong coupling regime between quantum-well excitons and the optical field in a semiconductor microcavity. The strong coupling results in a quasi-particle exciton–polariton, which gives access to positive and negative reactive and dissipative optical nonlinearities, as opposed to the usual room temperature semiconductor nonlinearities possessing essentially only one sign. The existence range and the properties of solitons can be varied widely by the detuning between polariton states and light frequency.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knoedl, M. Miller, and R. Jaeger, Nature 419, 699 (2002).
    [CrossRef] [PubMed]
  2. V. B. Taranenko, G. Slekys, and C. O. Weiss, Chaos 13, 777 (2003).
    [CrossRef] [PubMed]
  3. Ye. Larionova and C. O. Weiss, Opt. Express 13, 10711 (2005).
    [CrossRef] [PubMed]
  4. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, Phys. Rev. Lett. 69, 3314 (1992).
    [CrossRef] [PubMed]
  5. H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, 2004).
  6. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Science 301, 200 (2003).
    [CrossRef] [PubMed]
  7. H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, Science 298, 199 (2002).
    [CrossRef] [PubMed]
  8. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. Andre, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, Nature 443, 409 (2006).
    [CrossRef] [PubMed]
  9. D. W. Snoke, Science 298, 1368 (2002).
    [CrossRef] [PubMed]
  10. A. C. Schaefer and D. G. Steel, Phys. Rev. Lett. 79, 4870 (1997).
    [CrossRef]
  11. A. Baas, J.-Ph. Karr, H. Eleuch, and E. Giacobino, Phys. Rev. A 69, 023809 (2004).
    [CrossRef]
  12. C. Ellmers, M. R. Hofmann, D. Karaiskaj, S. Leu, W. Stolz, W. W. Ruehle, and M. Hilpert, Appl. Phys. Lett. 74, 1367 (1999).
    [CrossRef]
  13. V. B. Taranenko, F. J. Ahlers, and K. Pierz, Appl. Phys. B 75, 75 (2002).
    [CrossRef]
  14. Ye. Larionova, C. O. Weiss, and O. Egorov, Opt. Express 13, 8308 (2005).
    [CrossRef] [PubMed]
  15. V. B. Taranenko, C. O. Weiss, and B. Schaepers, Phys. Rev. A 65, 013812 (2001).
    [CrossRef]

2006 (1)

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. Andre, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, Nature 443, 409 (2006).
[CrossRef] [PubMed]

2005 (2)

2004 (1)

A. Baas, J.-Ph. Karr, H. Eleuch, and E. Giacobino, Phys. Rev. A 69, 023809 (2004).
[CrossRef]

2003 (2)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Science 301, 200 (2003).
[CrossRef] [PubMed]

V. B. Taranenko, G. Slekys, and C. O. Weiss, Chaos 13, 777 (2003).
[CrossRef] [PubMed]

2002 (4)

H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, Science 298, 199 (2002).
[CrossRef] [PubMed]

D. W. Snoke, Science 298, 1368 (2002).
[CrossRef] [PubMed]

V. B. Taranenko, F. J. Ahlers, and K. Pierz, Appl. Phys. B 75, 75 (2002).
[CrossRef]

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knoedl, M. Miller, and R. Jaeger, Nature 419, 699 (2002).
[CrossRef] [PubMed]

2001 (1)

V. B. Taranenko, C. O. Weiss, and B. Schaepers, Phys. Rev. A 65, 013812 (2001).
[CrossRef]

1999 (1)

C. Ellmers, M. R. Hofmann, D. Karaiskaj, S. Leu, W. Stolz, W. W. Ruehle, and M. Hilpert, Appl. Phys. Lett. 74, 1367 (1999).
[CrossRef]

1997 (1)

A. C. Schaefer and D. G. Steel, Phys. Rev. Lett. 79, 4870 (1997).
[CrossRef]

1992 (1)

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, Phys. Rev. Lett. 69, 3314 (1992).
[CrossRef] [PubMed]

Appl. Phys. B (1)

V. B. Taranenko, F. J. Ahlers, and K. Pierz, Appl. Phys. B 75, 75 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

C. Ellmers, M. R. Hofmann, D. Karaiskaj, S. Leu, W. Stolz, W. W. Ruehle, and M. Hilpert, Appl. Phys. Lett. 74, 1367 (1999).
[CrossRef]

Chaos (1)

V. B. Taranenko, G. Slekys, and C. O. Weiss, Chaos 13, 777 (2003).
[CrossRef] [PubMed]

Nature (2)

S. Barland, J. R. Tredicce, M. Brambilla, L. A. Lugiato, S. Balle, M. Giudici, T. Maggipinto, L. Spinelli, G. Tissoni, T. Knoedl, M. Miller, and R. Jaeger, Nature 419, 699 (2002).
[CrossRef] [PubMed]

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. Andre, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, Nature 443, 409 (2006).
[CrossRef] [PubMed]

Opt. Express (2)

Phys. Rev. A (2)

V. B. Taranenko, C. O. Weiss, and B. Schaepers, Phys. Rev. A 65, 013812 (2001).
[CrossRef]

A. Baas, J.-Ph. Karr, H. Eleuch, and E. Giacobino, Phys. Rev. A 69, 023809 (2004).
[CrossRef]

Phys. Rev. Lett. (2)

A. C. Schaefer and D. G. Steel, Phys. Rev. Lett. 79, 4870 (1997).
[CrossRef]

C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, Phys. Rev. Lett. 69, 3314 (1992).
[CrossRef] [PubMed]

Science (3)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Science 301, 200 (2003).
[CrossRef] [PubMed]

H. Deng, G. Weihs, C. Santori, J. Bloch, and Y. Yamamoto, Science 298, 199 (2002).
[CrossRef] [PubMed]

D. W. Snoke, Science 298, 1368 (2002).
[CrossRef] [PubMed]

Other (1)

H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Linear reflectivity spectrum of the sample measured at 10 K for some position on the sample. See text for details. (b,c) Exciton–polariton resonances measured in the reflectivity spectrum at 4 K . (b) Resonance wavelengths as a function of position on the InGaAs sample (corresponding to a linear variation of the cavity resonance wavelength). (c) Notch depth for two polariton resonances as a function of position on the InGaAs sample. Lines are to guide the eye. The dotted line in (c) shows the threshold value for observation of optical bistability.

Fig. 2
Fig. 2

Optical bistability measured at 4 K [position on the sample is 8.5 mm , λ 888 , and 1 nm , lower polariton curve in Fig. 1]. (a) Incident and reflected light as a function of time. (b) Plane-wave bistability domain. Squares, switch-on intensity; dots, switch-off intensity. The slope of the domain with respect to wavelength indicates that the nonlinearity is, at least partly, refractive. (c) Reflectivity of experimentally observed switched area (3D representation with reflectivity on the z axis and a gray code for the reflectivity).

Fig. 3
Fig. 3

Schematic phase diagram for plane-wave bistability and bright and dark solitons, calculated for a mixed absorptive/self-focusing case [2]. Area limited by dashed curves is the optical bistability domain for plane waves. Shaded areas are stability domains for bright–dark solitons and patterns. Insets are bright and dark solitons in 3D representation. The vertical line shows schematically the intensity change for reaching the domain of soliton existence. Detuning is normalized to cavity resonance width.

Fig. 4
Fig. 4

Spatial structures experimentally observed at 4 K . Two different orientations of the 3D representations shown for both solitons for clarity. Transverse scale is the same for all pictures (3D representation with reflectivity on the Z axis and a gray code for the reflectivity).

Metrics