Abstract

We demonstrate Mach–Zehnder interferometers (MZI) assembled using optical microfibers or nanofibers (MNFs) drawn from silica fibers and tellurite glasses. As-assembled MZIs, with dimensions of tens to hundreds of micrometers, show good interference fringes with extinction ratios of 10dB. The path-length difference of the MZI can be tuned by micromanipulation under an optical microscope. The MNF-assembled MZIs demonstrated here show advantages of easy fabrication, in situ tunability, and compact size.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. G. B. Hocker, Appl. Opt. 18, 1445 (1979).
    [CrossRef] [PubMed]
  2. S. J. Spammer, P. L. Swart, and A. Booysen, Appl. Opt. 35, 4522 (1996).
    [CrossRef] [PubMed]
  3. S. Nakamura, K. Tajima, N. Hamao, and Y. Sugimoto, Appl. Phys. Lett. 62, 925 (1993).
    [CrossRef]
  4. F. Rehouma, W. Elflein, D. Persegol, A. Kevorkian, G. Clauss, P. Benech, and R. Rimet, Appl. Phys. Lett. 66, 1461 (1995).
    [CrossRef]
  5. C. Wu, P. Lin, R. Huang, W. Chao, and M. M. H. Lee, Appl. Phys. Lett. 89, 121121 (2006).
    [CrossRef]
  6. M. Kuznetsov, J. Lightwave Technol. 12, 226 (1994).
    [CrossRef]
  7. M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, H. Yuhawa, S. J. Choi, J. D. O'Brien, and P. D. Dapkus, Appl. Phys. Lett. 84, 460 (2004).
    [CrossRef]
  8. J. H. Lim, H. S. Jang, K. S. Lee, J. C. Kim, and B. H. Lee, Opt. Lett. 29, 346 (2004).
    [CrossRef] [PubMed]
  9. B. Wang and G. P. Wang, Opt. Express 13, 10558 (2005).
    [CrossRef] [PubMed]
  10. P. Domachuk, C. Grillet, V. Ta'eed, E. Mägi, J. Bolger, B. J. Eggleton, L. E. Rodd, and J. Cooper-White, Appl. Phys. Lett. 86, 024103 (2005).
    [CrossRef]
  11. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
    [CrossRef] [PubMed]
  12. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, Opt. Express 12, 2864 (2004).
    [CrossRef] [PubMed]
  13. G. Brambilla, V. Finazzi, and D. Richardson, Opt. Express 12, 2258 (2004).
    [CrossRef] [PubMed]
  14. L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, and Z. Ye, Opt. Express 14, 82 (2006).
    [CrossRef] [PubMed]
  15. L. Tong, J. Lou, and E. Mazur, Opt. Express 12, 1025 (2004).
    [CrossRef] [PubMed]
  16. K. Huang, S. Yang, and L. Tong, Appl. Opt. 46, 1429 (2007).
    [CrossRef] [PubMed]
  17. L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, Nano Lett. 5, 259 (2005).
    [CrossRef] [PubMed]
  18. M. Sumetsky, Y. Dulashko, and A. Hale, Opt. Express 12, 3521 (2004).
    [CrossRef] [PubMed]
  19. M. Sumetsky, Opt. Express 12, 2303 (2004).
    [CrossRef] [PubMed]
  20. M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, Appl. Phys. Lett. 86, 161108 (2005).
    [CrossRef]
  21. X. Jiang, L. Tong, G. Vienne, and X. Guo, Appl. Phys. Lett. 88, 223501 (2006).
    [CrossRef]
  22. X. Jiang, Y. Chen, G. Vienne, and L. Tong, Opt. Lett. 32, 1710 (2007).
    [CrossRef] [PubMed]
  23. X. Jiang, Q. Yang, G. Vienne, Y. Li, and L. Tong, Appl. Phys. Lett. 89, 143513 (2006).
    [CrossRef]
  24. J. Lou, L. Tong, and Z. Ye, Opt. Express 13, 2135 (2005).
    [CrossRef] [PubMed]
  25. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, Opt. Lett. 30, 1273 (2005).
    [CrossRef] [PubMed]
  26. J. Villatoro and D. Monzón-Hernández, Opt. Express 13, 5087 (2005).
    [CrossRef] [PubMed]
  27. N. Takato, T. Kominato, A. Sugita, K. Jinguji, H. Toba, and M. Kawachi, IEEE J. Sel. Areas Commun. 8, 1120 (1990).
    [CrossRef]
  28. E. Mägi, H. Nguyen, and B. Eggleton, Opt. Express 13, 453 (2005).
    [CrossRef] [PubMed]

2007 (2)

2006 (4)

X. Jiang, Q. Yang, G. Vienne, Y. Li, and L. Tong, Appl. Phys. Lett. 89, 143513 (2006).
[CrossRef]

L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, and Z. Ye, Opt. Express 14, 82 (2006).
[CrossRef] [PubMed]

X. Jiang, L. Tong, G. Vienne, and X. Guo, Appl. Phys. Lett. 88, 223501 (2006).
[CrossRef]

C. Wu, P. Lin, R. Huang, W. Chao, and M. M. H. Lee, Appl. Phys. Lett. 89, 121121 (2006).
[CrossRef]

2005 (8)

L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, Nano Lett. 5, 259 (2005).
[CrossRef] [PubMed]

B. Wang and G. P. Wang, Opt. Express 13, 10558 (2005).
[CrossRef] [PubMed]

P. Domachuk, C. Grillet, V. Ta'eed, E. Mägi, J. Bolger, B. J. Eggleton, L. E. Rodd, and J. Cooper-White, Appl. Phys. Lett. 86, 024103 (2005).
[CrossRef]

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, Appl. Phys. Lett. 86, 161108 (2005).
[CrossRef]

J. Lou, L. Tong, and Z. Ye, Opt. Express 13, 2135 (2005).
[CrossRef] [PubMed]

P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, Opt. Lett. 30, 1273 (2005).
[CrossRef] [PubMed]

J. Villatoro and D. Monzón-Hernández, Opt. Express 13, 5087 (2005).
[CrossRef] [PubMed]

E. Mägi, H. Nguyen, and B. Eggleton, Opt. Express 13, 453 (2005).
[CrossRef] [PubMed]

2004 (7)

2003 (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef] [PubMed]

1996 (1)

1995 (1)

F. Rehouma, W. Elflein, D. Persegol, A. Kevorkian, G. Clauss, P. Benech, and R. Rimet, Appl. Phys. Lett. 66, 1461 (1995).
[CrossRef]

1994 (1)

M. Kuznetsov, J. Lightwave Technol. 12, 226 (1994).
[CrossRef]

1993 (1)

S. Nakamura, K. Tajima, N. Hamao, and Y. Sugimoto, Appl. Phys. Lett. 62, 925 (1993).
[CrossRef]

1990 (1)

N. Takato, T. Kominato, A. Sugita, K. Jinguji, H. Toba, and M. Kawachi, IEEE J. Sel. Areas Commun. 8, 1120 (1990).
[CrossRef]

1979 (1)

Appl. Opt. (3)

Appl. Phys. Lett. (8)

M. H. Shih, W. J. Kim, W. Kuang, J. R. Cao, H. Yuhawa, S. J. Choi, J. D. O'Brien, and P. D. Dapkus, Appl. Phys. Lett. 84, 460 (2004).
[CrossRef]

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, Appl. Phys. Lett. 86, 161108 (2005).
[CrossRef]

X. Jiang, L. Tong, G. Vienne, and X. Guo, Appl. Phys. Lett. 88, 223501 (2006).
[CrossRef]

S. Nakamura, K. Tajima, N. Hamao, and Y. Sugimoto, Appl. Phys. Lett. 62, 925 (1993).
[CrossRef]

F. Rehouma, W. Elflein, D. Persegol, A. Kevorkian, G. Clauss, P. Benech, and R. Rimet, Appl. Phys. Lett. 66, 1461 (1995).
[CrossRef]

C. Wu, P. Lin, R. Huang, W. Chao, and M. M. H. Lee, Appl. Phys. Lett. 89, 121121 (2006).
[CrossRef]

P. Domachuk, C. Grillet, V. Ta'eed, E. Mägi, J. Bolger, B. J. Eggleton, L. E. Rodd, and J. Cooper-White, Appl. Phys. Lett. 86, 024103 (2005).
[CrossRef]

X. Jiang, Q. Yang, G. Vienne, Y. Li, and L. Tong, Appl. Phys. Lett. 89, 143513 (2006).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

N. Takato, T. Kominato, A. Sugita, K. Jinguji, H. Toba, and M. Kawachi, IEEE J. Sel. Areas Commun. 8, 1120 (1990).
[CrossRef]

J. Lightwave Technol. (1)

M. Kuznetsov, J. Lightwave Technol. 12, 226 (1994).
[CrossRef]

Nano Lett. (1)

L. Tong, J. Lou, R. R. Gattass, S. He, X. Chen, L. Liu, and E. Mazur, Nano Lett. 5, 259 (2005).
[CrossRef] [PubMed]

Nature (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, Nature 426, 816 (2003).
[CrossRef] [PubMed]

Opt. Express (10)

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

MZI assembled with silica MNFs. (a) Schematic of a MZI assembled with two MNFs, which are continuously connected to single-mode fibers through fiber tapers. The MZI structure is supported on the surface of a MgF 2 substrate, and the two single-mode fibers are fixed on the substrate for robust operation. The arrows indicate the direction of light propagation. (b) Optical microscope image of an as-fabricated MZI assembled using two silica MNFs with diameters of 1.0 μ m .

Fig. 2
Fig. 2

Transmission spectrum of the MZI shown in Fig. 1b. The path-length difference calculated from the spectrum is 87 μ m .

Fig. 3
Fig. 3

Transmission spectra of a MNF-assembled MZI with path differences of (a) 8.3, (b) 13, (c) 19, and (d) 58 μ m . The spectral intensities of (a)–(c) are offset for clarity. The MZI is assembled from two silica MNFs with diameters of 1.1 and 1.2 μ m . The path-length difference of the MZI is tuned by means of micromanipulation.

Fig. 4
Fig. 4

MZI assembled with tellurite glass MNFs. (a) Optical microscope image of a MZI assembled with two 480 nm diameter tellurite MNFs. White light from a supercontinuum source is launched into and picked up from the MZI by two silica fiber tapers. The white arrows indicate the direction of light propagation. (b) Transmission spectrum of the MZI shown in (a).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ L = λ min λ max ( 2 Δ λ n g ) ,

Metrics