Abstract

We introduce a new experimental method to measure the local electromagnetic density of states (LDOS) by integrating the differential scattering cross section. The signal detected essentially reflects the intrinsic scattering response of the photonic structures and renders the partial LDOS dominated by evanescent modes. We give a theoretical understanding of the LDOS image formation and show a qualitative agreement between experimental images and theoretical maps. This approach can be practically applied to the direct measurement of an optical antenna’s scattering efficiency and can provide valuable information for designing optimum structures utilized in radiative decay engineering.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, Nature 430, 654 (2004).
    [CrossRef] [PubMed]
  2. M. J. A. de Dood, L. H. Sloof, A. Polman, A. Moroz, and A. Van Blaaderen, Phys. Rev. A 64, 033807 (2001).
    [CrossRef]
  3. J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes, J. Phys. D 36, R240 (2003).
    [CrossRef]
  4. L. Novotny, Phys. Rev. Lett. 98, 266802 (2007).
    [CrossRef] [PubMed]
  5. L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, Nano Lett. 6, 2060 (2006).
    [CrossRef] [PubMed]
  6. F. Wijnands, J. B. Pendry, F. J. Garcia-Vidal, P. M. Bell, P. J. Roberts, and L. Martin-Moreno, Opt. Quantum Electron. 29, 199 (1997).
    [CrossRef]
  7. R. Carminati and J. J. Sáenz, Phys. Rev. Lett. 84, 5156 (2000).
    [CrossRef] [PubMed]
  8. G. Colas des Francs, C. Girard, J. C. Weeber, and A. Dereux, Chem. Phys. Lett. 345, 512 (2001).
    [CrossRef]
  9. K. Joulain, R. Carminati, J. P. Mulet, and J.-J. Greffet, Phys. Rev. B 68, 245405 (2003).
    [CrossRef]
  10. C. Chicanne, T. David, R. Quidant, J. C. Weeber, Y. Lacroute, E. Bourillot, A. Dereux, G. Colas des Francs, and C. Girard, Phys. Rev. Lett. 88, 097402 (2002).
    [CrossRef] [PubMed]
  11. J. R. Guest, T. H. Stievater, G. Chen, E. A. Tabak, B. G. Orr, D. G. Steel, D. Gammon, and D. S. Katzer, Science 293, 2224 (2001).
    [CrossRef] [PubMed]
  12. K. Imura, T. Nagahara, and H. Okamoto, Tokyo J. Math. 108, 16344 (2004).
  13. G. Colas des Francs, C. Girard, J. C. Weeber, C. Chicanne, T. David, A. Dereux, and D. Peyrade, Phys. Rev. Lett. 86, 4950 (2001).
    [CrossRef] [PubMed]
  14. G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, Phys. Rev. B 68, 155427 (2003).
    [CrossRef]
  15. W. Lukosz and R. E. Kunz, J. Opt. Soc. Am. 67, 1607 (1977).
    [CrossRef]
  16. E. Mendez, J.-J. Greffet, and R. Carminati, Opt. Commun. 142, 7 (1997).
    [CrossRef]

2007 (1)

L. Novotny, Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef] [PubMed]

2006 (1)

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, Nano Lett. 6, 2060 (2006).
[CrossRef] [PubMed]

2004 (2)

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, Nature 430, 654 (2004).
[CrossRef] [PubMed]

K. Imura, T. Nagahara, and H. Okamoto, Tokyo J. Math. 108, 16344 (2004).

2003 (3)

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, Phys. Rev. B 68, 155427 (2003).
[CrossRef]

J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes, J. Phys. D 36, R240 (2003).
[CrossRef]

K. Joulain, R. Carminati, J. P. Mulet, and J.-J. Greffet, Phys. Rev. B 68, 245405 (2003).
[CrossRef]

2002 (1)

C. Chicanne, T. David, R. Quidant, J. C. Weeber, Y. Lacroute, E. Bourillot, A. Dereux, G. Colas des Francs, and C. Girard, Phys. Rev. Lett. 88, 097402 (2002).
[CrossRef] [PubMed]

2001 (4)

J. R. Guest, T. H. Stievater, G. Chen, E. A. Tabak, B. G. Orr, D. G. Steel, D. Gammon, and D. S. Katzer, Science 293, 2224 (2001).
[CrossRef] [PubMed]

M. J. A. de Dood, L. H. Sloof, A. Polman, A. Moroz, and A. Van Blaaderen, Phys. Rev. A 64, 033807 (2001).
[CrossRef]

G. Colas des Francs, C. Girard, J. C. Weeber, C. Chicanne, T. David, A. Dereux, and D. Peyrade, Phys. Rev. Lett. 86, 4950 (2001).
[CrossRef] [PubMed]

G. Colas des Francs, C. Girard, J. C. Weeber, and A. Dereux, Chem. Phys. Lett. 345, 512 (2001).
[CrossRef]

2000 (1)

R. Carminati and J. J. Sáenz, Phys. Rev. Lett. 84, 5156 (2000).
[CrossRef] [PubMed]

1997 (2)

F. Wijnands, J. B. Pendry, F. J. Garcia-Vidal, P. M. Bell, P. J. Roberts, and L. Martin-Moreno, Opt. Quantum Electron. 29, 199 (1997).
[CrossRef]

E. Mendez, J.-J. Greffet, and R. Carminati, Opt. Commun. 142, 7 (1997).
[CrossRef]

1977 (1)

Chem. Phys. Lett. (1)

G. Colas des Francs, C. Girard, J. C. Weeber, and A. Dereux, Chem. Phys. Lett. 345, 512 (2001).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. D (1)

J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes, J. Phys. D 36, R240 (2003).
[CrossRef]

Nano Lett. (1)

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, Nano Lett. 6, 2060 (2006).
[CrossRef] [PubMed]

Nature (1)

P. Lodahl, A. Floris Van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, and W. L. Vos, Nature 430, 654 (2004).
[CrossRef] [PubMed]

Opt. Commun. (1)

E. Mendez, J.-J. Greffet, and R. Carminati, Opt. Commun. 142, 7 (1997).
[CrossRef]

Opt. Quantum Electron. (1)

F. Wijnands, J. B. Pendry, F. J. Garcia-Vidal, P. M. Bell, P. J. Roberts, and L. Martin-Moreno, Opt. Quantum Electron. 29, 199 (1997).
[CrossRef]

Phys. Rev. A (1)

M. J. A. de Dood, L. H. Sloof, A. Polman, A. Moroz, and A. Van Blaaderen, Phys. Rev. A 64, 033807 (2001).
[CrossRef]

Phys. Rev. B (2)

K. Joulain, R. Carminati, J. P. Mulet, and J.-J. Greffet, Phys. Rev. B 68, 245405 (2003).
[CrossRef]

G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, Phys. Rev. B 68, 155427 (2003).
[CrossRef]

Phys. Rev. Lett. (4)

G. Colas des Francs, C. Girard, J. C. Weeber, C. Chicanne, T. David, A. Dereux, and D. Peyrade, Phys. Rev. Lett. 86, 4950 (2001).
[CrossRef] [PubMed]

R. Carminati and J. J. Sáenz, Phys. Rev. Lett. 84, 5156 (2000).
[CrossRef] [PubMed]

C. Chicanne, T. David, R. Quidant, J. C. Weeber, Y. Lacroute, E. Bourillot, A. Dereux, G. Colas des Francs, and C. Girard, Phys. Rev. Lett. 88, 097402 (2002).
[CrossRef] [PubMed]

L. Novotny, Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef] [PubMed]

Science (1)

J. R. Guest, T. H. Stievater, G. Chen, E. A. Tabak, B. G. Orr, D. G. Steel, D. Gammon, and D. S. Katzer, Science 293, 2224 (2001).
[CrossRef] [PubMed]

Tokyo J. Math. (1)

K. Imura, T. Nagahara, and H. Okamoto, Tokyo J. Math. 108, 16344 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental scheme. The structures are illuminated by a 0.65 N.A. objective, and the scattered components are collected by a 1.45 N.A. lens. The evanescent scattered angular spectrum is Fourier selected by a beam stop.

Fig. 2
Fig. 2

(a)–(c) Three-dimensional experimental views of LDOS during the construction of an optical corral. (d) Experimental LDOS for the complete corral. (e) Calculated LDOS ρ ( r ) . (f) Experimental (circles) and calculated (solid curve) profiles taken along the dashed lines in (d) and (e).

Fig. 3
Fig. 3

(a) E x 2 intensity calculated 100 nm above the surface. (b) Normalized ρ x ( r ) . (c) Experimental images for an incident x polarization (thick arrow). (d) Normalized ρ y ( r ) . (e) and (f) Experimental LDOS for an incident y polarization (thick arrows) and parallel and perpendicular analyzer orientations (dashed arrows).

Metrics