Abstract

Serially grafted polymer optical waveguides were fabricated by the light-induced self-written (LISW) waveguide technique for the first time to our knowledge. To realize functional waveguide cores by the LISW technique, transparent materials at the writing wavelength were selected. By inserting thin transparent partitions, a serial-graft structure consisting of passive and active waveguides without any misalignment was realized automatically. This technique is advantageous for its extremely easy process over conventional fabrication techniques.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. Y. Ichihashi, P. Henzi, M. Bruendel, J. Mohr, and D. G. Rabus, Opt. Lett. 32, 379 (2007).
    [CrossRef] [PubMed]
  2. L. Eladada, R. Blomquist, L. W. Shacklette, and M. J. McFarland, Opt. Eng. 39, 596 (2000).
    [CrossRef]
  3. S. J. Frisken, Opt. Lett. 18, 1035 (1993).
    [CrossRef] [PubMed]
  4. A. S. Kewitsch and A. Yariv, Opt. Lett. 21, 24 (1996).
    [CrossRef] [PubMed]
  5. M. Kagami, T. Yamashita, and H. Ito, Appl. Phys. Lett. 79, 1079 (2001).
    [CrossRef]
  6. T. Yamashita, M. Kagami, and H. Ito, J. EICE Trans. Electron. E90-C, 1061 (2007).
    [CrossRef]
  7. K. Dorkenoo, O. Cregut, L. Mager, F. Gillot, C. Carre, and A. Fort, Opt. Lett. 27, 1782 (2002).
    [CrossRef]
  8. N. Hirose, T. Yoshimura, and O. Ibaragi, in Proceedings of 51st Electronic Components and Technology Conference (IEEE, 2001), pp. 223-228.
  9. O. Sugihara, H. Tsuchie, H. Endo, N. Okamoto, T. Yamashita, M. Kagami, and T. Kaino, IEEE Photon. Technol. Lett. 16, 804 (2004).
    [CrossRef]
  10. O. Mikami, Proc. SPIE 6014, 6014DL-1 (2005).
  11. T. Watanabe, M. Amano, M. Hikita, Y. Shuto, and S. Tomaru, Appl. Phys. Lett. 65, 1205 (1994).
    [CrossRef]
  12. T. Matsui, K. Komatsu, O. Sugihara, and T. Kaino, Opt. Lett. 30, 970 (2005).
    [CrossRef] [PubMed]
  13. R. Y. Chiao, E. Garmire, and C. H. Townes, Phys. Rev. Lett. 13, 479 (1964).
    [CrossRef]
  14. T. M. Monro, D. Moss, M. Bazylenko, C. M. Sterke, and L. Poladian, Phys. Rev. Lett. 80, 4072 (1998).
    [CrossRef]
  15. M. Irie, Chem. Rev. 100, 1685 (2000).
    [CrossRef]
  16. A. Kaneko, Z. Lu, H. Wang, R. J. Twieg, G. Mao, K. D. Singer, T. Kaino, Quantum Opt. 34, 45 (2005).
  17. J. W. Kang, J. S. Kim, C. M. Lee, E. Kim, and J. J. Kim, Electron. Lett. 36, 1641 (2000).
    [CrossRef]

2007 (2)

Y. Ichihashi, P. Henzi, M. Bruendel, J. Mohr, and D. G. Rabus, Opt. Lett. 32, 379 (2007).
[CrossRef] [PubMed]

T. Yamashita, M. Kagami, and H. Ito, J. EICE Trans. Electron. E90-C, 1061 (2007).
[CrossRef]

2005 (3)

O. Mikami, Proc. SPIE 6014, 6014DL-1 (2005).

T. Matsui, K. Komatsu, O. Sugihara, and T. Kaino, Opt. Lett. 30, 970 (2005).
[CrossRef] [PubMed]

A. Kaneko, Z. Lu, H. Wang, R. J. Twieg, G. Mao, K. D. Singer, T. Kaino, Quantum Opt. 34, 45 (2005).

2004 (1)

O. Sugihara, H. Tsuchie, H. Endo, N. Okamoto, T. Yamashita, M. Kagami, and T. Kaino, IEEE Photon. Technol. Lett. 16, 804 (2004).
[CrossRef]

2002 (1)

2001 (1)

M. Kagami, T. Yamashita, and H. Ito, Appl. Phys. Lett. 79, 1079 (2001).
[CrossRef]

2000 (3)

L. Eladada, R. Blomquist, L. W. Shacklette, and M. J. McFarland, Opt. Eng. 39, 596 (2000).
[CrossRef]

J. W. Kang, J. S. Kim, C. M. Lee, E. Kim, and J. J. Kim, Electron. Lett. 36, 1641 (2000).
[CrossRef]

M. Irie, Chem. Rev. 100, 1685 (2000).
[CrossRef]

1998 (1)

T. M. Monro, D. Moss, M. Bazylenko, C. M. Sterke, and L. Poladian, Phys. Rev. Lett. 80, 4072 (1998).
[CrossRef]

1996 (1)

1994 (1)

T. Watanabe, M. Amano, M. Hikita, Y. Shuto, and S. Tomaru, Appl. Phys. Lett. 65, 1205 (1994).
[CrossRef]

1993 (1)

1964 (1)

R. Y. Chiao, E. Garmire, and C. H. Townes, Phys. Rev. Lett. 13, 479 (1964).
[CrossRef]

Appl. Phys. Lett. (2)

M. Kagami, T. Yamashita, and H. Ito, Appl. Phys. Lett. 79, 1079 (2001).
[CrossRef]

T. Watanabe, M. Amano, M. Hikita, Y. Shuto, and S. Tomaru, Appl. Phys. Lett. 65, 1205 (1994).
[CrossRef]

Chem. Rev. (1)

M. Irie, Chem. Rev. 100, 1685 (2000).
[CrossRef]

Electron. Lett. (1)

J. W. Kang, J. S. Kim, C. M. Lee, E. Kim, and J. J. Kim, Electron. Lett. 36, 1641 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

O. Sugihara, H. Tsuchie, H. Endo, N. Okamoto, T. Yamashita, M. Kagami, and T. Kaino, IEEE Photon. Technol. Lett. 16, 804 (2004).
[CrossRef]

J. EICE Trans. Electron. (1)

T. Yamashita, M. Kagami, and H. Ito, J. EICE Trans. Electron. E90-C, 1061 (2007).
[CrossRef]

Opt. Eng. (1)

L. Eladada, R. Blomquist, L. W. Shacklette, and M. J. McFarland, Opt. Eng. 39, 596 (2000).
[CrossRef]

Opt. Lett. (5)

Phys. Rev. Lett. (2)

R. Y. Chiao, E. Garmire, and C. H. Townes, Phys. Rev. Lett. 13, 479 (1964).
[CrossRef]

T. M. Monro, D. Moss, M. Bazylenko, C. M. Sterke, and L. Poladian, Phys. Rev. Lett. 80, 4072 (1998).
[CrossRef]

Proc. SPIE (1)

O. Mikami, Proc. SPIE 6014, 6014DL-1 (2005).

Quantum Opt. (1)

A. Kaneko, Z. Lu, H. Wang, R. J. Twieg, G. Mao, K. D. Singer, T. Kaino, Quantum Opt. 34, 45 (2005).

Other (1)

N. Hirose, T. Yoshimura, and O. Ibaragi, in Proceedings of 51st Electronic Components and Technology Conference (IEEE, 2001), pp. 223-228.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Fabrication process of a serially grafted LISW optical waveguide.

Fig. 2
Fig. 2

Chromophores used for functional LISW waveguide: (a) diarylethene, (b) CDCOP, (c) Nile blue, (d) rhodamine B.

Fig. 3
Fig. 3

Absorption spectra of diarylethene-doped monomer resin.

Fig. 4
Fig. 4

Photographs of a serially grafted LISW waveguide using diarylethene-doped polymer and observation of photochromism.

Fig. 5
Fig. 5

Photographs of a serially grafted LISW waveguide using (a) CDCOP electro-optic polymer and (b) Nile blue–doped polymer.

Fig. 6
Fig. 6

Photograph of a functional LISW waveguide core using single-mode fibers.

Metrics