Abstract

We report the achievement of a highly versatile imager consisting of a tunable fluidic lens with a wide tuning range and three fixed lenses. The device has a volume of less than 1cm3 and a short total track length of 12.5cm. It can function as a regular camera with an ultrawide autofocusing range and as a microscope with 3μm resolution.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. M. F. Land and D. E. Nilsson, Animal Eyes (Oxford U. Press, 2002).
  2. G. Westheimer, J. Mod. Opt. 17, 641 (1970).
  3. D. Atchison and G. Smith, Optics of the Human Eye, (Elsevier Health Sciences, 2000).
  4. D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, Appl. Phys. Lett. 82, 3171 (2003).
    [CrossRef]
  5. B. Berge and J. Peseux, Eur. Phys. J. E 3, 159 (2000).
    [CrossRef]
  6. S. Kuiper and B. H. W. Hendriks, Appl. Phys. Lett. 85, 1128 (2004).
    [CrossRef]
  7. D. Zhang, N. Justis, and Y.-H. Lo, Opt. Lett. 29, 2855 (2004).
    [CrossRef]
  8. D. Zhang, N. Justis, and Y.-H. Lo, IEEE J. Sel. Top. Quantum Electron. 11, 97 (2005).
    [CrossRef]
  9. D. Zhang, N. Justis, and Y.-H. Lo, Appl. Phys. Lett. 84, 4194 (2004).
    [CrossRef]
  10. R. Kuwano, Y. Mizutani, T. Tokunaga, and Y. Otani, Proc. SPIE 6374, 1-4 (2006).
  11. H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, Opt. Commun. 230, 267 (2004).
    [CrossRef]
  12. P. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, Appl. Phys. Lett. 88, 041120 (2006).
    [CrossRef]

2006

R. Kuwano, Y. Mizutani, T. Tokunaga, and Y. Otani, Proc. SPIE 6374, 1-4 (2006).

P. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, Appl. Phys. Lett. 88, 041120 (2006).
[CrossRef]

2005

D. Zhang, N. Justis, and Y.-H. Lo, IEEE J. Sel. Top. Quantum Electron. 11, 97 (2005).
[CrossRef]

2004

D. Zhang, N. Justis, and Y.-H. Lo, Appl. Phys. Lett. 84, 4194 (2004).
[CrossRef]

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, Opt. Commun. 230, 267 (2004).
[CrossRef]

S. Kuiper and B. H. W. Hendriks, Appl. Phys. Lett. 85, 1128 (2004).
[CrossRef]

D. Zhang, N. Justis, and Y.-H. Lo, Opt. Lett. 29, 2855 (2004).
[CrossRef]

2003

D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, Appl. Phys. Lett. 82, 3171 (2003).
[CrossRef]

2000

B. Berge and J. Peseux, Eur. Phys. J. E 3, 159 (2000).
[CrossRef]

1970

G. Westheimer, J. Mod. Opt. 17, 641 (1970).

Appl. Phys. Lett.

D. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y.-H. Lo, Appl. Phys. Lett. 82, 3171 (2003).
[CrossRef]

S. Kuiper and B. H. W. Hendriks, Appl. Phys. Lett. 85, 1128 (2004).
[CrossRef]

D. Zhang, N. Justis, and Y.-H. Lo, Appl. Phys. Lett. 84, 4194 (2004).
[CrossRef]

P. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, Appl. Phys. Lett. 88, 041120 (2006).
[CrossRef]

Eur. Phys. J. E

B. Berge and J. Peseux, Eur. Phys. J. E 3, 159 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

D. Zhang, N. Justis, and Y.-H. Lo, IEEE J. Sel. Top. Quantum Electron. 11, 97 (2005).
[CrossRef]

J. Mod. Opt.

G. Westheimer, J. Mod. Opt. 17, 641 (1970).

Opt. Commun.

H. Ren, Y.-H. Fan, S. Gauza, and S.-T. Wu, Opt. Commun. 230, 267 (2004).
[CrossRef]

Opt. Lett.

Proc. SPIE

R. Kuwano, Y. Mizutani, T. Tokunaga, and Y. Otani, Proc. SPIE 6374, 1-4 (2006).

Other

M. F. Land and D. E. Nilsson, Animal Eyes (Oxford U. Press, 2002).

D. Atchison and G. Smith, Optics of the Human Eye, (Elsevier Health Sciences, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Image formation with object at infinity. (b) Image formation with object placed at 2 cm in front of the lens.

Fig. 2
Fig. 2

Structure of fluidic lenses.

Fig. 3
Fig. 3

(a) Image of a stone bear at UCSD. This stone bear is 15 m away from the camera. (b) The focus of the fluidic lens is changed to view a paper placed 1 cm away from the camera lens.

Fig. 4
Fig. 4

(a) UCSD emblem on a business card. This picture is taken when the card is placed at 14 cm away from the imaging system. (b) The business card is moved toward the imaging device to a distance of about 1 cm . By tuning the focal length of the fluidic lens, we can see the fine texture of the paper.

Fig. 5
Fig. 5

(a) Picture of 1951 USAF target (Edmund Optics) taken with a commercial microscope objective equivalent to 100 × magnification. (b) The same USAF target taken with our universal imaging device. Features as small as 3 μ m can be resolved from our device.

Metrics