Abstract

A compact approach to photonic-assisted ultrawideband (UWB) monocycle pulse generation is proposed and experimentally demonstrated based on the wavelength dependence of the half-wave voltage of a Mach–Zehnder modulator (MZM). By employing a single MZM with dual-wavelength injection at around 1310 and 1550nm, a pair of polarity-reversed monocycle pulses with the full width at half-maximum of about 80ps and the fractional bandwidth of greater than 160% can be generated. The experiment results agree well with the theoretical prediction. The simple setup and the convenience to control the monocycle pulse polarity are favorable for future applications.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. G. R. Aiello and G. D. Rogerson, IEEE Microw. Mag. 4, 36 (2003).
    [CrossRef]
  2. D. Porcine, P. Research, and W. Hirt, IEEE Commun. Mag. 41, 66 (2003).
    [CrossRef]
  3. X. Chen and S. Kiaei, in IEEE International Symposium Circuits and Systems (IEEE, 2002), Vol. 1, pp. I-597-I-600.
  4. J. Dong, X. Zhang, J. Xu, and D. Huang, Opt. Lett. 32, 2158 (2007).
    [CrossRef] [PubMed]
  5. H. Chen, M. Chen, C. Qiu, J. Zhang, and S. Xie, Electron. Lett. 43, 542 (2007).
    [CrossRef]
  6. Q. Wang and J. Yao, Electron. Lett. 42, 1304 (2006).
    [CrossRef]
  7. I. S. Lin, J. D. McKinney, and A. M. Weiner, IEEE Microw. Wirel. Compon. Lett. 15, 226 (2005).
    [CrossRef]
  8. T. Kawanishi, T. Sakamoto, and M. Izutsu, IEEE Microw. Wirel. Compon. Lett. 15, 153 (2005).
    [CrossRef]
  9. M. Shin, V. S. Grigoryan, and P. Kumar, Electron. Lett. 43, 242 (2007).
    [CrossRef]
  10. B. Vidal, J. L. Corral, and J. Martí, IEEE Photonics Technol. Lett. 17, 666 (2005).
    [CrossRef]
  11. G. L. Li and P. K. L. Yu, J. Lightwave Technol. 21, 2010 (2003).
    [CrossRef]

2007

J. Dong, X. Zhang, J. Xu, and D. Huang, Opt. Lett. 32, 2158 (2007).
[CrossRef] [PubMed]

H. Chen, M. Chen, C. Qiu, J. Zhang, and S. Xie, Electron. Lett. 43, 542 (2007).
[CrossRef]

M. Shin, V. S. Grigoryan, and P. Kumar, Electron. Lett. 43, 242 (2007).
[CrossRef]

2006

Q. Wang and J. Yao, Electron. Lett. 42, 1304 (2006).
[CrossRef]

2005

I. S. Lin, J. D. McKinney, and A. M. Weiner, IEEE Microw. Wirel. Compon. Lett. 15, 226 (2005).
[CrossRef]

T. Kawanishi, T. Sakamoto, and M. Izutsu, IEEE Microw. Wirel. Compon. Lett. 15, 153 (2005).
[CrossRef]

B. Vidal, J. L. Corral, and J. Martí, IEEE Photonics Technol. Lett. 17, 666 (2005).
[CrossRef]

2003

G. L. Li and P. K. L. Yu, J. Lightwave Technol. 21, 2010 (2003).
[CrossRef]

G. R. Aiello and G. D. Rogerson, IEEE Microw. Mag. 4, 36 (2003).
[CrossRef]

D. Porcine, P. Research, and W. Hirt, IEEE Commun. Mag. 41, 66 (2003).
[CrossRef]

Electron. Lett.

H. Chen, M. Chen, C. Qiu, J. Zhang, and S. Xie, Electron. Lett. 43, 542 (2007).
[CrossRef]

Q. Wang and J. Yao, Electron. Lett. 42, 1304 (2006).
[CrossRef]

M. Shin, V. S. Grigoryan, and P. Kumar, Electron. Lett. 43, 242 (2007).
[CrossRef]

IEEE Commun. Mag.

D. Porcine, P. Research, and W. Hirt, IEEE Commun. Mag. 41, 66 (2003).
[CrossRef]

IEEE Microw. Mag.

G. R. Aiello and G. D. Rogerson, IEEE Microw. Mag. 4, 36 (2003).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett.

I. S. Lin, J. D. McKinney, and A. M. Weiner, IEEE Microw. Wirel. Compon. Lett. 15, 226 (2005).
[CrossRef]

T. Kawanishi, T. Sakamoto, and M. Izutsu, IEEE Microw. Wirel. Compon. Lett. 15, 153 (2005).
[CrossRef]

IEEE Photonics Technol. Lett.

B. Vidal, J. L. Corral, and J. Martí, IEEE Photonics Technol. Lett. 17, 666 (2005).
[CrossRef]

J. Lightwave Technol.

Opt. Lett.

Other

X. Chen and S. Kiaei, in IEEE International Symposium Circuits and Systems (IEEE, 2002), Vol. 1, pp. I-597-I-600.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Measured transfer functions at 1310.2 and 1550.0 nm .

Fig. 2
Fig. 2

Schematic pulse evolution.

Fig. 3
Fig. 3

Simulated pulse waveforms and their spectra.

Fig. 4
Fig. 4

Experiment setup.

Fig. 5
Fig. 5

Experiment results.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

s ( t ) = ± A 1 exp [ ( 4 ln 2 ) ( t + Δ τ 2 ) 2 T FWHM 2 ] A 2 exp [ ( 4 ln 2 ) ( t Δ τ 2 ) 2 T FWHM 2 ] ,
Δ τ = L S 0 8 ( λ 2 2 λ 1 2 ) ( 1 λ 0 4 λ 1 2 λ 2 2 ) ,

Metrics