Abstract

Supercontinua generated in highly nonlinear fibers by ultrashort-pulse lasers can be used for high-resolution Fourier transform absorption spectroscopy. The practical advantages of these bright ultrabroadband light sources for spectroscopy in the near-infrared region are reported. A Cr4+:YAG femtosecond laser broadened by an extruded soft-glass photonic crystal fiber, emitting from 1200to2200nm and from 675to950nm, provides a spectral radiance 1×105 times higher than that of a 3000K blackbody and 102 times higher than that of synchrotron radiation. The C2H2 and NH3 overtone spectra are recorded by using this source within a few seconds.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. R. W. McKellar, D. W. Tokaryk, L.-H. Xu, D. R. T. Appadoo, and T. May, J. Mol. Spectrosc. 242, 31 (2007).
    [CrossRef]
  2. S. A. Diddams, L. Hollberg, and V. Mbele, Nature 445, 627 (2007).
    [CrossRef] [PubMed]
  3. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, Science 311, 1595 (2006).
    [CrossRef] [PubMed]
  4. J. Mandon, G. Guelachvili, N. Picqué, F. Druon, and P. Georges, Opt. Lett. 32, 1677 (2007).
    [CrossRef] [PubMed]
  5. E. Sorokin, I. T. Sorokina, J. Mandon, G. Guelachvili, and N. Picqué, Opt. Express 15, 16540 (2007).
    [CrossRef] [PubMed]
  6. J. Mandon, G. Guelachvili, and N. Picqué are preparing a manuscript to be called "Doppler-limited multiplex frequency comb spectrometry."
  7. K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, Appl. Phys. Lett. 85, 3366 (2004).
    [CrossRef]
  8. J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
    [CrossRef]
  9. J. Hult, R. S. Watt, and C. F. Kaminski, Opt. Express 15, 11385 (2007).
    [CrossRef] [PubMed]
  10. S. T. Sanders, Appl. Phys. B 75, 799 (2002).
    [CrossRef]
  11. P. V. Kelkar, F. Coppinger, A. S. Bhushan, and B. Jalali, Electron. Lett. 35, 1661 (1999).
    [CrossRef]
  12. E. Sorokin, S. Naumov, and I. T. Sorokina, IEEE J. Sel. Top. Quantum Electron. 11, 690 (2005).
    [CrossRef]
  13. V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, Appl. Phys. B 83, 503 (2006).
    [CrossRef]
  14. E. Sorokin, V. L. Kalashnikov, J. Mandon, G. Guelachvili, N. Picqué, and I. T. Sorokina, "Cr:YAG chirped pulse oscillator," New J. Phys. (to be published).
  15. V. V. Ravi Kumar, A. George, W. Reeves, J. Knight, P. Russell, F. Omenetto, and A. Taylor, Opt. Express 10, 1520 (2002).
  16. V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, Appl. Phys. B 87, 37 (2007).
    [CrossRef] [PubMed]
  17. V. L. Kalashnikov, E. Sorokin, S. Naumov, I. T. Sorokina, V. V. Ravi Kanth Kumar, and A. K. George, Appl. Phys. B 79, 591 (2004).
    [CrossRef]
  18. H. Hundertmark, D. Kracht, D. Wandt, C. Fallnich, V. V. Ravi Kanth Kumar, A. K. George, J. C. Knight, and P. St. J. Russell, Opt. Express 11, 3196 (2003).
    [CrossRef] [PubMed]
  19. V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, Appl. Phys. B 87, 37 (2007).
    [CrossRef] [PubMed]
  20. P. Roy, M. Rouzières, Z. Qi, and O. Chubar, Infrared Phys. Technol. 49, 139 (2006).
    [CrossRef]
  21. C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, Jr., M. J. Freeman, M. Poulain, and G. Mazé, Opt. Lett. 31, 2553 (2006).
    [CrossRef] [PubMed]

2007 (7)

A. R. W. McKellar, D. W. Tokaryk, L.-H. Xu, D. R. T. Appadoo, and T. May, J. Mol. Spectrosc. 242, 31 (2007).
[CrossRef]

S. A. Diddams, L. Hollberg, and V. Mbele, Nature 445, 627 (2007).
[CrossRef] [PubMed]

J. Mandon, G. Guelachvili, N. Picqué, F. Druon, and P. Georges, Opt. Lett. 32, 1677 (2007).
[CrossRef] [PubMed]

E. Sorokin, I. T. Sorokina, J. Mandon, G. Guelachvili, and N. Picqué, Opt. Express 15, 16540 (2007).
[CrossRef] [PubMed]

J. Hult, R. S. Watt, and C. F. Kaminski, Opt. Express 15, 11385 (2007).
[CrossRef] [PubMed]

V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, Appl. Phys. B 87, 37 (2007).
[CrossRef] [PubMed]

V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, Appl. Phys. B 87, 37 (2007).
[CrossRef] [PubMed]

2006 (5)

P. Roy, M. Rouzières, Z. Qi, and O. Chubar, Infrared Phys. Technol. 49, 139 (2006).
[CrossRef]

C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, Jr., M. J. Freeman, M. Poulain, and G. Mazé, Opt. Lett. 31, 2553 (2006).
[CrossRef] [PubMed]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, Appl. Phys. B 83, 503 (2006).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, Science 311, 1595 (2006).
[CrossRef] [PubMed]

2005 (1)

E. Sorokin, S. Naumov, and I. T. Sorokina, IEEE J. Sel. Top. Quantum Electron. 11, 690 (2005).
[CrossRef]

2004 (2)

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, Appl. Phys. Lett. 85, 3366 (2004).
[CrossRef]

V. L. Kalashnikov, E. Sorokin, S. Naumov, I. T. Sorokina, V. V. Ravi Kanth Kumar, and A. K. George, Appl. Phys. B 79, 591 (2004).
[CrossRef]

2003 (1)

2002 (2)

1999 (1)

P. V. Kelkar, F. Coppinger, A. S. Bhushan, and B. Jalali, Electron. Lett. 35, 1661 (1999).
[CrossRef]

Appl. Phys. B (5)

S. T. Sanders, Appl. Phys. B 75, 799 (2002).
[CrossRef]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, Appl. Phys. B 83, 503 (2006).
[CrossRef]

V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, Appl. Phys. B 87, 37 (2007).
[CrossRef] [PubMed]

V. L. Kalashnikov, E. Sorokin, S. Naumov, I. T. Sorokina, V. V. Ravi Kanth Kumar, and A. K. George, Appl. Phys. B 79, 591 (2004).
[CrossRef]

V. L. Kalashnikov, E. Sorokin, and I. T. Sorokina, Appl. Phys. B 87, 37 (2007).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

K. A. Tillman, R. R. J. Maier, D. T. Reid, and E. D. McNaghten, Appl. Phys. Lett. 85, 3366 (2004).
[CrossRef]

Electron. Lett. (1)

P. V. Kelkar, F. Coppinger, A. S. Bhushan, and B. Jalali, Electron. Lett. 35, 1661 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

E. Sorokin, S. Naumov, and I. T. Sorokina, IEEE J. Sel. Top. Quantum Electron. 11, 690 (2005).
[CrossRef]

Infrared Phys. Technol. (1)

P. Roy, M. Rouzières, Z. Qi, and O. Chubar, Infrared Phys. Technol. 49, 139 (2006).
[CrossRef]

J. Mol. Spectrosc. (1)

A. R. W. McKellar, D. W. Tokaryk, L.-H. Xu, D. R. T. Appadoo, and T. May, J. Mol. Spectrosc. 242, 31 (2007).
[CrossRef]

Nature (1)

S. A. Diddams, L. Hollberg, and V. Mbele, Nature 445, 627 (2007).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Science (1)

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, Science 311, 1595 (2006).
[CrossRef] [PubMed]

Other (2)

J. Mandon, G. Guelachvili, and N. Picqué are preparing a manuscript to be called "Doppler-limited multiplex frequency comb spectrometry."

E. Sorokin, V. L. Kalashnikov, J. Mandon, G. Guelachvili, N. Picqué, and I. T. Sorokina, "Cr:YAG chirped pulse oscillator," New J. Phys. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup. The chirped pulses generated by the Cr 4 + : YAG oscillator are compressed by a single-mode fiber (SMF) and spectrally broadened in the PCF. The SC light probes a cell and is analyzed by a FT spectrometer. CM, chirped mirrors; OC, output coupler.

Fig. 2
Fig. 2

Low-resolution spectra on a logarithmic vertical scale of the laser output (blue or black curve outlining the plot filled in white) and the 4.5 μ m -core-diameter SF6 PCF output (red or black curve outlining the plot filled in magenta or gray).

Fig. 3
Fig. 3

SC high-resolution spectra on a linear vertical scale of the acetylene molecule in the 1.5 μ m region at 28 and 160 hPa . The strongest spectral features are the P and R branches of the ν 1 + ν 3 band of C 2 12 H 2 .

Fig. 4
Fig. 4

Spectra at 15 GHz resolution (on a linear vertical scale) of the ammonia molecule in the 1.65 μ m region. Lower trace, SC spectrum with a N H 3 pressure of 128 hPa and an absorption path length of 70 cm ; recording time 3.1 s . Upper trace, spectrum from a classical halogen source with a N H 3 pressure of 132 Pa and an absorption path length of 28 m ; recording time 10 min . The vertical scale is shifted to allow better comparison. Slight discrepancies between the ratio of lines in the two traces are due to imperfect fringe suppression in the SC spectrum.

Metrics