Abstract

We propose a fluorescence surface imaging system that presents a power of resolution beyond that of the diffraction limit without resorting to saturation effects or probe scanning. This is achieved by depositing the sample on an optimized periodically nanostructured substrate in a standard total internal reflection fluorescence microscope. The grating generates a high-spatial-frequency light grid that can be moved throughout the sample by changing the incident angle. An appropriate reconstruction procedure permits one to recover the fluorescence amplitude from the images obtained for various incidences. Simulations of this imaging system show that the resolution is not limited by diffraction but by the period of the grating.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. G. Cox and C. J. R. Sheppard, Microsc. Res. Tech. 63, 18 (2004).
    [CrossRef]
  2. S. Hell, Science 25, 1153 (2007).
    [CrossRef]
  3. M. Gustafsson, Proc. Natl. Acad. Sci. USA 102, 13081 (2005).
    [CrossRef] [PubMed]
  4. S. Bretschneider, C. Eggeling, and S. W. Hell, Phys. Rev. Lett. 98, 218103 (2007).
    [CrossRef] [PubMed]
  5. D. Marks and P. S. Carney, Opt. Lett. 30, 1870 (2005).
    [CrossRef] [PubMed]
  6. J.-J. Greffet and R. Carminati, Prog. Surf. Sci. 56, 133 (1997).
    [CrossRef]
  7. Z. Liu, H. Lee, L. Xiong, C. Sun, and X. Zhang, Science 315, 1686 (2007).
    [CrossRef] [PubMed]
  8. I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, Science 315, 1699 (2007).
    [CrossRef] [PubMed]
  9. I. I. Smolyaninov, J. Elliott, A. V. Zayats, and C. C. Davis, Phys. Rev. Lett. 94, 057401 (2005).
    [CrossRef] [PubMed]
  10. A. Sentenac, P. C. Chaumet, and K. Belkebir, Phys. Rev. Lett. 97, 243901 (2006).
    [CrossRef]
  11. Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, Nano Lett. 7, 403 (2007).
    [CrossRef] [PubMed]
  12. D. Toomre and D. J. Manstein, Trends Cell Biol. 11, 298 (2001).
    [CrossRef] [PubMed]
  13. R. Heintzmann and C. Cremer, Proc. SPIE 3568, 185 (1998).
    [CrossRef]
  14. M. Gustafsson, J. Microsc. 198, 82 (2000).
    [CrossRef] [PubMed]
  15. J. Frohn, H. Knapp, and A. Stemmer, Proc. Natl. Acad. Sci. USA 97, 7232 (2000).
    [CrossRef] [PubMed]
  16. E. Chung, D. Kim, and P. So, Opt. Lett. 31, 945 (2006).
    [CrossRef] [PubMed]
  17. G. Cragg and P. So, Opt. Lett. 25, 46 (2000).
    [CrossRef]
  18. R. Petit, Electromagnetic Theory of Gratings (Springer-Verlag, 1980).
    [CrossRef]
  19. E. N. Economou, Phys. Rev. 182, 539 (1969).
    [CrossRef]
  20. L. Li, J. Opt. Soc. Am. A 14, 2758 (1996).
    [CrossRef]
  21. P. C. Chaumet, K. Belkebir, and A. Sentenac, Phys. Rev. B 69, 245405 (2004).
    [CrossRef]

2007 (5)

S. Hell, Science 25, 1153 (2007).
[CrossRef]

S. Bretschneider, C. Eggeling, and S. W. Hell, Phys. Rev. Lett. 98, 218103 (2007).
[CrossRef] [PubMed]

Z. Liu, H. Lee, L. Xiong, C. Sun, and X. Zhang, Science 315, 1686 (2007).
[CrossRef] [PubMed]

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, Science 315, 1699 (2007).
[CrossRef] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, Nano Lett. 7, 403 (2007).
[CrossRef] [PubMed]

2006 (2)

E. Chung, D. Kim, and P. So, Opt. Lett. 31, 945 (2006).
[CrossRef] [PubMed]

A. Sentenac, P. C. Chaumet, and K. Belkebir, Phys. Rev. Lett. 97, 243901 (2006).
[CrossRef]

2005 (3)

I. I. Smolyaninov, J. Elliott, A. V. Zayats, and C. C. Davis, Phys. Rev. Lett. 94, 057401 (2005).
[CrossRef] [PubMed]

D. Marks and P. S. Carney, Opt. Lett. 30, 1870 (2005).
[CrossRef] [PubMed]

M. Gustafsson, Proc. Natl. Acad. Sci. USA 102, 13081 (2005).
[CrossRef] [PubMed]

2004 (2)

G. Cox and C. J. R. Sheppard, Microsc. Res. Tech. 63, 18 (2004).
[CrossRef]

P. C. Chaumet, K. Belkebir, and A. Sentenac, Phys. Rev. B 69, 245405 (2004).
[CrossRef]

2001 (1)

D. Toomre and D. J. Manstein, Trends Cell Biol. 11, 298 (2001).
[CrossRef] [PubMed]

2000 (3)

M. Gustafsson, J. Microsc. 198, 82 (2000).
[CrossRef] [PubMed]

J. Frohn, H. Knapp, and A. Stemmer, Proc. Natl. Acad. Sci. USA 97, 7232 (2000).
[CrossRef] [PubMed]

G. Cragg and P. So, Opt. Lett. 25, 46 (2000).
[CrossRef]

1998 (1)

R. Heintzmann and C. Cremer, Proc. SPIE 3568, 185 (1998).
[CrossRef]

1997 (1)

J.-J. Greffet and R. Carminati, Prog. Surf. Sci. 56, 133 (1997).
[CrossRef]

1996 (1)

1969 (1)

E. N. Economou, Phys. Rev. 182, 539 (1969).
[CrossRef]

J. Microsc. (1)

M. Gustafsson, J. Microsc. 198, 82 (2000).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Microsc. Res. Tech. (1)

G. Cox and C. J. R. Sheppard, Microsc. Res. Tech. 63, 18 (2004).
[CrossRef]

Nano Lett. (1)

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, Nano Lett. 7, 403 (2007).
[CrossRef] [PubMed]

Opt. Lett. (3)

Phys. Rev. (1)

E. N. Economou, Phys. Rev. 182, 539 (1969).
[CrossRef]

Phys. Rev. B (1)

P. C. Chaumet, K. Belkebir, and A. Sentenac, Phys. Rev. B 69, 245405 (2004).
[CrossRef]

Phys. Rev. Lett. (3)

S. Bretschneider, C. Eggeling, and S. W. Hell, Phys. Rev. Lett. 98, 218103 (2007).
[CrossRef] [PubMed]

I. I. Smolyaninov, J. Elliott, A. V. Zayats, and C. C. Davis, Phys. Rev. Lett. 94, 057401 (2005).
[CrossRef] [PubMed]

A. Sentenac, P. C. Chaumet, and K. Belkebir, Phys. Rev. Lett. 97, 243901 (2006).
[CrossRef]

Proc. Natl. Acad. Sci. USA (2)

J. Frohn, H. Knapp, and A. Stemmer, Proc. Natl. Acad. Sci. USA 97, 7232 (2000).
[CrossRef] [PubMed]

M. Gustafsson, Proc. Natl. Acad. Sci. USA 102, 13081 (2005).
[CrossRef] [PubMed]

Proc. SPIE (1)

R. Heintzmann and C. Cremer, Proc. SPIE 3568, 185 (1998).
[CrossRef]

Prog. Surf. Sci. (1)

J.-J. Greffet and R. Carminati, Prog. Surf. Sci. 56, 133 (1997).
[CrossRef]

Science (3)

Z. Liu, H. Lee, L. Xiong, C. Sun, and X. Zhang, Science 315, 1686 (2007).
[CrossRef] [PubMed]

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, Science 315, 1699 (2007).
[CrossRef] [PubMed]

S. Hell, Science 25, 1153 (2007).
[CrossRef]

Trends Cell Biol. (1)

D. Toomre and D. J. Manstein, Trends Cell Biol. 11, 298 (2001).
[CrossRef] [PubMed]

Other (1)

R. Petit, Electromagnetic Theory of Gratings (Springer-Verlag, 1980).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Outline of the proposed experimental setup. The fluorescent sample is deposited on a grating that is illuminated by one plane wave in total internal reflection configuration through an immersed objective. The fluorescence is collected through the same objective, and its image is formed on the image plane of the microscope. A total of 24 images are recorded by successively illuminating the sample under different incidence. (b) Zoom of the grating substrate.

Fig. 2
Fig. 2

(a) Fluorophore density distribution of the sample in the ( x , y ) plane. The bright spots represent the beads deposited on the substrate, and the ghost spots represent the beads at z = 50 nm above the substrate. (b) Simulated intensity obtained on the image plane of the microscope for the first illumination.

Fig. 3
Fig. 3

(a) Reconstructed density of fluorophores obtained with the linear inverse procedure from the 24 images in the GA-TIRFM. (b) Same as (a) in the SW-TIRFM configuration.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I l ( r ) = [ ( O × E l ) P ] ( r ) + B , for l = 1 , , N ,
F ( O ̃ ) = l = 1 N r Ω I l ( r ) ( O ̃ × E l ) P ( r ) 2 .

Metrics