Abstract

We present results of the implementation of three-photon excitation fluorescence (3PEF) and third harmonic generation imaging measurements for the precise and nondestructive detection of natural and synthetic varnish layers, which are used for the surface protection of painted artifacts. For this purpose, we employ as an excitation source a compact femtosecond laser operating at 1028nm. Two-dimensional images of the multilayer structures from different samples are depicted. The third harmonic signals show the interface between the different materials, when its refractive index mismatch is high enough. The depths of different layers of varnishes, presenting similar refractive index, are distinguishable with an axial resolution of 1μm by employing 3PEF measurements.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. R. J. Gettens and G. L. Stout, Painting Materials (Dover, 1966).
  2. K. Melessanaki, C. Stringari, C. Fotakis, and D. Anglos, Laser Chem. 2006, 42709 (2006).
    [CrossRef]
  3. C. Fotakis, D. Anglos, V. Zafiropulos, S. Georgiou, and V. Tornari, Lasers in the Preservation of Cultural Heritage: Principles and Applications (Taylor & Francis, 2006).
  4. S. Georgiou, Z. Zafiropulos, D. Anglos, C. Balas, V. Tornari, and C. Fotakis, Appl. Surf. Sci. 127, 738 (1998).
    [CrossRef]
  5. D. Anglos, Appl. Spectrosc. 55, 186 (2001).
    [CrossRef]
  6. P. Targowski, M. Gora, and M. Wojtkowski, Laser Chem. 2006, 10647 (2006).
  7. W. R. Zipfel, R. M. Williams, and W. W. Webb, Nat. Biotechnol. 21, 1369 (2003).
    [CrossRef] [PubMed]
  8. A. R. Woll, J. Mass, C. Bisulca, R. Huang, D. H. Bilderback, S. Gruner, and N. Gao, Opt. Lett. 31, 942 (2006).
    [CrossRef]
  9. I. G. Cormack, P. Losa-Alvarez, L. Sarrado, S. Tomas, I. Amat-Roldan, L. Torner, D. Artigas, J. Guitart, J. Pera, and J. Ros, J. Archaeol. Sci. 34, 1594 (2007).
    [CrossRef]
  10. J. Ying, F. Liu, P. P. Ho, and R. R. Alfano, Opt. Lett. 25, 1189 (2000).
    [CrossRef]
  11. J. A. Squier, M. Muller, G. J. Brakenhoff, and K. R. Wilson, Opt. Express 3, 315 (1998).
    [CrossRef] [PubMed]
  12. D. Debarre, W. Supatto, and E. Beaurepaire, Opt. Lett. 30, 2134 (2005).
    [CrossRef] [PubMed]
  13. S. W. Chu, S. Y. Chen, T. H. Tsai, T. M. Liu, C. Y. Lin, H. J. Tsai, and C. K. Sun, Opt. Express 11, 3093 (2003).
    [CrossRef] [PubMed]
  14. M. Elias, L. Simonot, M. Thoury, and J. M. Frigerio, Opt. Commun. 231, 25 (2004).
    [CrossRef]

2007 (1)

I. G. Cormack, P. Losa-Alvarez, L. Sarrado, S. Tomas, I. Amat-Roldan, L. Torner, D. Artigas, J. Guitart, J. Pera, and J. Ros, J. Archaeol. Sci. 34, 1594 (2007).
[CrossRef]

2006 (3)

A. R. Woll, J. Mass, C. Bisulca, R. Huang, D. H. Bilderback, S. Gruner, and N. Gao, Opt. Lett. 31, 942 (2006).
[CrossRef]

K. Melessanaki, C. Stringari, C. Fotakis, and D. Anglos, Laser Chem. 2006, 42709 (2006).
[CrossRef]

P. Targowski, M. Gora, and M. Wojtkowski, Laser Chem. 2006, 10647 (2006).

2005 (1)

2004 (1)

M. Elias, L. Simonot, M. Thoury, and J. M. Frigerio, Opt. Commun. 231, 25 (2004).
[CrossRef]

2003 (2)

2001 (1)

D. Anglos, Appl. Spectrosc. 55, 186 (2001).
[CrossRef]

2000 (1)

1998 (2)

J. A. Squier, M. Muller, G. J. Brakenhoff, and K. R. Wilson, Opt. Express 3, 315 (1998).
[CrossRef] [PubMed]

S. Georgiou, Z. Zafiropulos, D. Anglos, C. Balas, V. Tornari, and C. Fotakis, Appl. Surf. Sci. 127, 738 (1998).
[CrossRef]

Appl. Spectrosc. (1)

D. Anglos, Appl. Spectrosc. 55, 186 (2001).
[CrossRef]

Appl. Surf. Sci. (1)

S. Georgiou, Z. Zafiropulos, D. Anglos, C. Balas, V. Tornari, and C. Fotakis, Appl. Surf. Sci. 127, 738 (1998).
[CrossRef]

J. Archaeol. Sci. (1)

I. G. Cormack, P. Losa-Alvarez, L. Sarrado, S. Tomas, I. Amat-Roldan, L. Torner, D. Artigas, J. Guitart, J. Pera, and J. Ros, J. Archaeol. Sci. 34, 1594 (2007).
[CrossRef]

Laser Chem. (2)

K. Melessanaki, C. Stringari, C. Fotakis, and D. Anglos, Laser Chem. 2006, 42709 (2006).
[CrossRef]

P. Targowski, M. Gora, and M. Wojtkowski, Laser Chem. 2006, 10647 (2006).

Nat. Biotechnol. (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, Nat. Biotechnol. 21, 1369 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

M. Elias, L. Simonot, M. Thoury, and J. M. Frigerio, Opt. Commun. 231, 25 (2004).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Other (2)

C. Fotakis, D. Anglos, V. Zafiropulos, S. Georgiou, and V. Tornari, Lasers in the Preservation of Cultural Heritage: Principles and Applications (Taylor & Francis, 2006).

R. J. Gettens and G. L. Stout, Painting Materials (Dover, 1966).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Absorption and (b) emission spectra of vinavil (dotted curve), mastic (solid curve), and colophony (dashed curve).

Fig. 2
Fig. 2

Precise sectioning of a thick sample [(a) THG and (b) 3PEF] and a thin sample [(c) THG and (d) 3PEF] containing a layer of vinavil and a layer of mastic. The lateral dimension of the scanning area of the recorded images is 15 μ m with 300 points resolution.

Fig. 3
Fig. 3

Sections of a sample with two different layers of natural varnishes, mastic and colophony: (a) THG signal, (b) 3PEF signal. The lateral dimension of the scanning area is 15 μ m with 300 points resolution.

Metrics