Abstract

Chaos synchronization and message transmission between two semiconductor lasers with extremely unsymmetrical bidirectional injections (EUBIs) are discussed. By using EUBIs, synchronization is realized through injection locking. Numerical results show that if the laser subjected to strong injection serves as the receiver, chaos pass filtering (CPF) of the system is similar to that of unidirectional coupled systems. Moreover, if the other laser serves as the receiver, a stronger CPF can be obtained. Finally, we demonstrate that messages can be extracted successfully from either of the two transmission directions of the system.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. I. Fischer, Y. Liu, and P. Davis, Phys. Rev. A 62, 011801 (2000).
    [CrossRef]
  2. J. M. Liu, H. F. Chen, and S. Tang, IEEE J. Quantum Electron. 38, 1184 (2002).
    [CrossRef]
  3. M. W. Lee and K. A. Shore, IEEE Photon. Technol. Lett. 18, 169 (2006).
    [CrossRef]
  4. X. F. Li, W. Pan, B. Luo, and D. Ma, IEEE J. Quantum Electron. 42, 953 (2006).
    [CrossRef]
  5. S. Tang and J. M. Liu, IEEE J. Quantum Electron. 39, 708 (2003).
    [CrossRef]
  6. J. Paul, M. W. Lee, and K. A. Shore, Opt. Lett. 29, 2497 (2004).
    [CrossRef] [PubMed]
  7. A. Murakami and K. A. Shore, Phys. Rev. A 72, 053810 (2005).
    [CrossRef]
  8. T. Heil, I. Fischer, and W. Elsässer, Phys. Rev. Lett. 86, 795 (2001).
    [CrossRef] [PubMed]
  9. J. Multet, C. Mirasso, T. Heil, and I. Fischer, J. Opt. B: Quantum Semiclassical Opt. 6, 97 (2004).
    [CrossRef]
  10. N. Gross, W. Kinzel, I. Kanter, M. Rosenbluh, and L. Khaykovich, Opt. Commun. 267, 464 (2006).
    [CrossRef]
  11. R. Vicente, C. R. Mirasso, and I. Fischer, Opt. Lett. 32, 403 (2007).
    [CrossRef] [PubMed]

2007 (1)

2006 (3)

M. W. Lee and K. A. Shore, IEEE Photon. Technol. Lett. 18, 169 (2006).
[CrossRef]

X. F. Li, W. Pan, B. Luo, and D. Ma, IEEE J. Quantum Electron. 42, 953 (2006).
[CrossRef]

N. Gross, W. Kinzel, I. Kanter, M. Rosenbluh, and L. Khaykovich, Opt. Commun. 267, 464 (2006).
[CrossRef]

2005 (1)

A. Murakami and K. A. Shore, Phys. Rev. A 72, 053810 (2005).
[CrossRef]

2004 (2)

J. Paul, M. W. Lee, and K. A. Shore, Opt. Lett. 29, 2497 (2004).
[CrossRef] [PubMed]

J. Multet, C. Mirasso, T. Heil, and I. Fischer, J. Opt. B: Quantum Semiclassical Opt. 6, 97 (2004).
[CrossRef]

2003 (1)

S. Tang and J. M. Liu, IEEE J. Quantum Electron. 39, 708 (2003).
[CrossRef]

2002 (1)

J. M. Liu, H. F. Chen, and S. Tang, IEEE J. Quantum Electron. 38, 1184 (2002).
[CrossRef]

2001 (1)

T. Heil, I. Fischer, and W. Elsässer, Phys. Rev. Lett. 86, 795 (2001).
[CrossRef] [PubMed]

2000 (1)

I. Fischer, Y. Liu, and P. Davis, Phys. Rev. A 62, 011801 (2000).
[CrossRef]

IEEE J. Quantum Electron. (3)

X. F. Li, W. Pan, B. Luo, and D. Ma, IEEE J. Quantum Electron. 42, 953 (2006).
[CrossRef]

S. Tang and J. M. Liu, IEEE J. Quantum Electron. 39, 708 (2003).
[CrossRef]

J. M. Liu, H. F. Chen, and S. Tang, IEEE J. Quantum Electron. 38, 1184 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. W. Lee and K. A. Shore, IEEE Photon. Technol. Lett. 18, 169 (2006).
[CrossRef]

J. Opt. B: Quantum Semiclassical Opt. (1)

J. Multet, C. Mirasso, T. Heil, and I. Fischer, J. Opt. B: Quantum Semiclassical Opt. 6, 97 (2004).
[CrossRef]

Opt. Commun. (1)

N. Gross, W. Kinzel, I. Kanter, M. Rosenbluh, and L. Khaykovich, Opt. Commun. 267, 464 (2006).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (2)

A. Murakami and K. A. Shore, Phys. Rev. A 72, 053810 (2005).
[CrossRef]

I. Fischer, Y. Liu, and P. Davis, Phys. Rev. A 62, 011801 (2000).
[CrossRef]

Phys. Rev. Lett. (1)

T. Heil, I. Fischer, and W. Elsässer, Phys. Rev. Lett. 86, 795 (2001).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Output powers in the time domain; (b) correlation index of outputs of lasers 1 and 2; (c) correlation index at Δ t = 1500 ns as functions of P, α, and τ.

Fig. 2
Fig. 2

(a), (b) Power spectra of the two lasers, taking lasers 1 and 2 as the transmitters, respectively. (c) Message amplitudes of the two lasers versus modulation frequency.

Fig. 3
Fig. 3

Decoded and original messages corresponding to case 3. In (a), the upper and the lower waveforms correspond to decoding at the end of lasers 2 and 1, respectively. In (b), the upper and the lower waveforms correspond to decoding at the end of lasers 2 and 3, respectively. Values of the parameters of laser 3 are set the same as those of laser 1.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d E 1 d s = ( 1 + i α 1 ) N 1 E 1 + η 1 exp ( i ϕ 1 ) E 2 ( s θ 1 ) ,
d E 2 d s = ( 1 + i α 2 ) N 2 E 2 + η 2 exp ( i ϕ 2 ) E 1 ( s θ 2 ) + i δ E 2 ,
T d N 1 , 2 d s = P 1 , 2 N 1 , 2 ( 1 + 2 N 1 , 2 ) E 1 , 2 2 .

Metrics