Abstract

A neoteric approach to interferometric phase imaging unencumbered by 2π phase ambiguities is presented. This technique utilizes an actively controlled angular displacement glass plate positioned in the reference arm of an environmentally stabilized pseudoheterodyne Mach–Zehnder interferometer. The plate is continually adjusted to maintain a constant interferometric output phase, as a phase object in the sample arm is raster scanned. Using a 632.8nm source, unwrapped phase images of translucent samples ranging from approximately 150nm  to  1.5μm thick were obtained. This system is incorporated into a conventional near-field scanning optical microscope, which permits simultaneous phase, intensity, and surface morphology studies.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. C. H. Yang, A. Wax, I. Georgakoudi, E. B. Hanlon, K. Badizadegan, R. R. Dasari, and M. S. Feld, Opt. Lett. 25, 1526 (2000).
    [CrossRef]
  2. J. N. Walford, K. A. Nugent, A. Roberts, and R. N. Scholten, Appl. Opt. 38, 3508 (1999).
    [CrossRef]
  3. M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, J. Microsc. 214, 7 (2004).
    [CrossRef] [PubMed]
  4. A. Ahn, C. Yang, A. Wax, G. Popescu, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, Appl. Opt. 44, 1188 (2005).
    [CrossRef] [PubMed]
  5. H. Iwai, C. Fang-Yen, G. Popescu, A. Wax, K. Badizadegan, R. R. Dasari, and M. S. Feld, Opt. Lett. 29, 2399 (2004).
    [CrossRef] [PubMed]
  6. X. Li, T. Yamauchi, H. Iwai, Y. Yamashita, H. Zhang, and T. Hiruma, Opt. Lett. 31, 1830 (2006).
    [CrossRef] [PubMed]
  7. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, Opt. Lett. 30, 1165 (2005).
    [CrossRef] [PubMed]
  8. G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, Opt. Lett. 29, 2503 (2004).
    [CrossRef] [PubMed]
  9. M. Servin, J. L. Marroquin, D. Malacara, and F. J. Cuevas, Appl. Opt. 37, 1917 (1998).
    [CrossRef]
  10. L. Zhang, Y. Zhang, C. Zhang, Y. Zhao, and X. Liu, Opt. Lett. 31, 3668 (2006).
    [CrossRef] [PubMed]
  11. C. Polhemus, Appl. Opt. 12, 2071 (1973).
    [CrossRef] [PubMed]
  12. D. Parshall and M. K. Kim, Appl. Opt. 45, 451 (2006).
    [CrossRef] [PubMed]
  13. M. Vaez-Iravani and R. Toledo-Crow, Appl. Phys. Lett. 62, 1044 (1993).
    [CrossRef]
  14. S. Pilevar, W. A. Atia, and C. C. Davis, Ultramicroscopy 61, 233 (1995).
    [CrossRef]
  15. R. J. Hocken, "A refractive index anomaly in xenon near its critical point," Ph.D. dissertation (State University of New York at Stony Brook, 1972).
  16. M. A. Paesler and M. J. Moyer, Near-field Optics (Wiley, 1996).
  17. Y. Seo, J. H. Park, J. Moon, and W. Jhe, Appl. Phys. Lett. 77, 4272 (2000).
    [CrossRef]

2006

2005

2004

2000

1999

1998

1995

S. Pilevar, W. A. Atia, and C. C. Davis, Ultramicroscopy 61, 233 (1995).
[CrossRef]

1993

M. Vaez-Iravani and R. Toledo-Crow, Appl. Phys. Lett. 62, 1044 (1993).
[CrossRef]

1973

Appl. Opt.

Appl. Phys. Lett.

Y. Seo, J. H. Park, J. Moon, and W. Jhe, Appl. Phys. Lett. 77, 4272 (2000).
[CrossRef]

M. Vaez-Iravani and R. Toledo-Crow, Appl. Phys. Lett. 62, 1044 (1993).
[CrossRef]

J. Microsc.

M. R. Arnison, K. G. Larkin, C. J. R. Sheppard, N. I. Smith, and C. J. Cogswell, J. Microsc. 214, 7 (2004).
[CrossRef] [PubMed]

Opt. Lett.

Ultramicroscopy

S. Pilevar, W. A. Atia, and C. C. Davis, Ultramicroscopy 61, 233 (1995).
[CrossRef]

Other

R. J. Hocken, "A refractive index anomaly in xenon near its critical point," Ph.D. dissertation (State University of New York at Stony Brook, 1972).

M. A. Paesler and M. J. Moyer, Near-field Optics (Wiley, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Stabilized interferometer setup: D1, D2, D3, photodiode detectors; BS1, BS2, beam splitters; QWP, quarter-wave plate; HWP, half-wave plate. The XYZ precision stage has a feedback-controlled z axis and computer-controlled x and y axes. The dotted line shows the path of light from the output ends of coupler to detectors D2 and D3.

Fig. 2
Fig. 2

Experimental results for imaging of red blood cells: (a) typical image of a red blood cell without phase unwrapping, (b) unwrapped phase image of cells, (c) topography image of cells, (d) intensity image of cells.

Fig. 3
Fig. 3

Experimental results for imaging of a small section of a Fresnel lens: (a) unwrapped phase image of a lens, (b) topography image of a lens, (c) intensity image of a lens.

Fig. 4
Fig. 4

Phase and SEM images of a PMMA sample with miscellaneous line patterns: (a) phase image of the 150 nm pattern. The black and while lines correspond to 100 and 150 nm , respectively; (b) SEM image of the region shown in (a).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I = I 1 + I 2 + 2 I 1 I 2 cos ( ϕ o cos ( Ω t δ e ) ) ,
I = I 1 + I 2 + 2 I 1 I 2 ( J o ( ϕ o ) cos ( δ e ) J 1 ( ϕ o ) sin ( δ e ) cos Ω t J 2 ( ϕ o ) cos ( δ e ) cos 2 Ω t ) ,
I = I s + I r + 2 I s I r ( J o ( ϕ o ) cos ( n π + δ s ) J 1 ( ϕ o ) sin ( n π + δ s ) cos Ω t J 2 ( ϕ o ) cos ( n π + δ s ) cos 2 Ω t ) ,
V Ω V 2 Ω = ( sin ( n π + δ s ) cos ( n π + δ s ) ) = tan ( δ s ) .
t = δ s λ 2 π ( n s 1 ) ,

Metrics