Abstract

We have analyzed and demonstrated surface-wave excitations, by propagating waves in air, at the interface between a truncated photonic crystal (PC) and a silver film in the near-infrared. The truncated PC was fabricated with several unit cells of alternating SiO2 and Si3N4 layers. The dispersion relation of surface waves was calculated using the supercell method. A Fourier-transform infrared spectrometer measured the spectral reflectance of the fabricated sample at different incidence angles. An angle-resolved laser scatterometer measured the reflectance as a function of the incidence angle at the wavelength of 891nm. The agreement between the resonance conditions obtained from experiments and the calculated dispersion relation manifests that surface waves at the PC–Ag interface may be utilized to build coherent thermal-emission sources.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  2. M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, and W. Knoll, Opt. Commun. 168, 117 (1999).
    [CrossRef]
  3. J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, Nature 416, 61 (2002).
    [CrossRef] [PubMed]
  4. M. Laroche, C. Arnold, E. Marquier, R. Carminati, J.-J. Greffet, S. Collin, N. Bardou, and J. L. Pelouard, Opt. Lett. 30, 2623 (2005).
    [CrossRef] [PubMed]
  5. S. Enoch, J.-J. Simon, L. Escoubas, Z. Elalmy, F. Lemarquis, P. Torchio, and G. Albrand, Appl. Phys. Lett. 86, 261101 (2005).
    [CrossRef]
  6. P. Ben-Abdallah and B. Ni, J. Appl. Phys. 97, 104910 (2005).
    [CrossRef]
  7. I. Celanovic, D. Perreault, and J. Kassakian, Phys. Rev. B 72, 075127 (2005).
    [CrossRef]
  8. M. Laroche, R. Carminati, and J.-J. Greffet, Phys. Rev. Lett. 96, 123903 (2006).
    [CrossRef] [PubMed]
  9. Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).
  10. P. Yeh, A. Yariv, and A. Cho, Appl. Phys. Lett. 32, 104 (1978).
    [CrossRef]
  11. W. M. Robertson and M. S. May, Appl. Phys. Lett. 74, 1800 (1999).
    [CrossRef]
  12. I. E. Tamm, Phys. Z. Sowjetunion 1, 733 (1932).
  13. J. A. Gaspar-Armenta and F. Villa, J. Opt. Soc. Am. B 20, 2349 (2003).
    [CrossRef]
  14. B. J. Lee, C. J. Fu, and Z. M. Zhang, Appl. Phys. Lett. 87, 071904 (2005).
    [CrossRef]
  15. B. J. Lee and Z. M. Zhang, J. Appl. Phys. 100, 063529 (2006).
    [CrossRef]
  16. Y. A. Vlasov, N. Moll, and S. J. McNab, Opt. Lett. 29, 2175 (2004).
    [CrossRef] [PubMed]
  17. B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, Phys. Rev. B 74, 195104 (2006).
    [CrossRef]
  18. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  19. Y. J. Shen, Q. Z. Zhu, and Z. M. Zhang, Rev. Sci. Instrum. 74, 4885 (2003).
    [CrossRef]
  20. F. Ramos-Mendieta and P. Halevi, J. Opt. Soc. Am. B 14, 370 (1997).
    [CrossRef]
  21. K. M. Ho, C. T. Chan, and C. M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1990).
    [CrossRef] [PubMed]

2006

M. Laroche, R. Carminati, and J.-J. Greffet, Phys. Rev. Lett. 96, 123903 (2006).
[CrossRef] [PubMed]

B. J. Lee and Z. M. Zhang, J. Appl. Phys. 100, 063529 (2006).
[CrossRef]

B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, Phys. Rev. B 74, 195104 (2006).
[CrossRef]

2005

B. J. Lee, C. J. Fu, and Z. M. Zhang, Appl. Phys. Lett. 87, 071904 (2005).
[CrossRef]

S. Enoch, J.-J. Simon, L. Escoubas, Z. Elalmy, F. Lemarquis, P. Torchio, and G. Albrand, Appl. Phys. Lett. 86, 261101 (2005).
[CrossRef]

P. Ben-Abdallah and B. Ni, J. Appl. Phys. 97, 104910 (2005).
[CrossRef]

I. Celanovic, D. Perreault, and J. Kassakian, Phys. Rev. B 72, 075127 (2005).
[CrossRef]

M. Laroche, C. Arnold, E. Marquier, R. Carminati, J.-J. Greffet, S. Collin, N. Bardou, and J. L. Pelouard, Opt. Lett. 30, 2623 (2005).
[CrossRef] [PubMed]

2004

2003

J. A. Gaspar-Armenta and F. Villa, J. Opt. Soc. Am. B 20, 2349 (2003).
[CrossRef]

Y. J. Shen, Q. Z. Zhu, and Z. M. Zhang, Rev. Sci. Instrum. 74, 4885 (2003).
[CrossRef]

2002

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, Nature 416, 61 (2002).
[CrossRef] [PubMed]

1999

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, and W. Knoll, Opt. Commun. 168, 117 (1999).
[CrossRef]

W. M. Robertson and M. S. May, Appl. Phys. Lett. 74, 1800 (1999).
[CrossRef]

1997

1990

K. M. Ho, C. T. Chan, and C. M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1990).
[CrossRef] [PubMed]

1978

P. Yeh, A. Yariv, and A. Cho, Appl. Phys. Lett. 32, 104 (1978).
[CrossRef]

1932

I. E. Tamm, Phys. Z. Sowjetunion 1, 733 (1932).

Appl. Phys. Lett.

S. Enoch, J.-J. Simon, L. Escoubas, Z. Elalmy, F. Lemarquis, P. Torchio, and G. Albrand, Appl. Phys. Lett. 86, 261101 (2005).
[CrossRef]

P. Yeh, A. Yariv, and A. Cho, Appl. Phys. Lett. 32, 104 (1978).
[CrossRef]

W. M. Robertson and M. S. May, Appl. Phys. Lett. 74, 1800 (1999).
[CrossRef]

B. J. Lee, C. J. Fu, and Z. M. Zhang, Appl. Phys. Lett. 87, 071904 (2005).
[CrossRef]

J. Appl. Phys.

B. J. Lee and Z. M. Zhang, J. Appl. Phys. 100, 063529 (2006).
[CrossRef]

P. Ben-Abdallah and B. Ni, J. Appl. Phys. 97, 104910 (2005).
[CrossRef]

J. Opt. Soc. Am. B

Nature

J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, Nature 416, 61 (2002).
[CrossRef] [PubMed]

Opt. Commun.

M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, and W. Knoll, Opt. Commun. 168, 117 (1999).
[CrossRef]

Opt. Lett.

Phys. Rev. B

B. Wang, W. Dai, A. Fang, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, Phys. Rev. B 74, 195104 (2006).
[CrossRef]

I. Celanovic, D. Perreault, and J. Kassakian, Phys. Rev. B 72, 075127 (2005).
[CrossRef]

Phys. Rev. Lett.

M. Laroche, R. Carminati, and J.-J. Greffet, Phys. Rev. Lett. 96, 123903 (2006).
[CrossRef] [PubMed]

K. M. Ho, C. T. Chan, and C. M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1990).
[CrossRef] [PubMed]

Phys. Z. Sowjetunion

I. E. Tamm, Phys. Z. Sowjetunion 1, 733 (1932).

Rev. Sci. Instrum.

Y. J. Shen, Q. Z. Zhu, and Z. M. Zhang, Rev. Sci. Instrum. 74, 4885 (2003).
[CrossRef]

Other

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Cross-sectional image of the fabricated PC-on-Ag structure. The Si 3 N 4 layer adjacent to the Ag film serves as a surface termination. The coordinates system is also shown for a plane wave with a wave vector k at an angle of incidence θ.

Fig. 2
Fig. 2

Spectral reflectance of the fabricated sample in the near-infrared at incidence angles θ = 30 ° and 45° for TE waves. Reflectance at near-normal incidence ( θ = 10 ° ) were also measured but not shown here.

Fig. 3
Fig. 3

Reflectance as a function of the incidence angles at 891 nm for the TE wave. The inset shows the directional emissivity calculated from Kirchhoff’s law.

Fig. 4
Fig. 4

Surface-wave dispersion relation, shown as a dashed curve for the TE wave. The resonance conditions obtained from the spectrometer measurements and from the scatterometer measurements are denoted by the circular and diamond marks, respectively.

Metrics