Abstract

We report on the compression of intense ultrashort laser pulses for the purpose of producing few-cycle optical pulses at the multimillijoule level by using a planar waveguide (PWG). The PWG is composed of two parallel glass slabs separated by a gap of 100μm and mounted in a gas chamber filled with a noble gas. In comparison with the conventional hollow-fiber-based pulse compression technique, the use of a PWG enables the injection of high-energy ultrashort pulses, because the input laser beam is confined only in the lateral direction perpendicular to the waveguide plane. Using this technique, we demonstrate the generation of 12fs, 2mJ laser pulses in an argon-filled PWG.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. B. Corkum and F. Krausz, Nat. Phys. 3, 381 (2007).
    [CrossRef]
  2. T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000).
    [CrossRef]
  3. M. Nisoli, S. De Silvestri, and O. Svelto, Appl. Phys. Lett. 68, 2793 (1996).
    [CrossRef]
  4. A. Suda, M. Hatayama, K. Nagasaka, and K. Midorikawa, Appl. Phys. Lett. 86, 111116-1 (2005).
    [CrossRef]
  5. M. Nurhuda, A. Suda, K. Midorikawa, and H. Budiono, J. Opt. Soc. Am. B 22, 1757 (2005).
    [CrossRef]
  6. M. Nurhuda, A. Suda, S. Bohman, S. Yamaguchi, and K. Midorikawa, Phys. Rev. Lett. 97, 153902-1 (2006).
    [CrossRef] [PubMed]
  7. A. Dubietis, G. Tamošauska, G. Fibich, and B. Ilan, Opt. Lett. 29, 1126 (2004).
    [CrossRef] [PubMed]
  8. R. W. Boyd, Nonlinear Optics (Academic, 1992), Chap. 6.
  9. I. G. Koprinkov, A. Suda, P. Wang, and K. Midorikawa, Phys. Rev. Lett. 84, 3847 (2000).
    [CrossRef] [PubMed]

2007 (1)

P. B. Corkum and F. Krausz, Nat. Phys. 3, 381 (2007).
[CrossRef]

2006 (1)

M. Nurhuda, A. Suda, S. Bohman, S. Yamaguchi, and K. Midorikawa, Phys. Rev. Lett. 97, 153902-1 (2006).
[CrossRef] [PubMed]

2005 (2)

A. Suda, M. Hatayama, K. Nagasaka, and K. Midorikawa, Appl. Phys. Lett. 86, 111116-1 (2005).
[CrossRef]

M. Nurhuda, A. Suda, K. Midorikawa, and H. Budiono, J. Opt. Soc. Am. B 22, 1757 (2005).
[CrossRef]

2004 (1)

2000 (2)

I. G. Koprinkov, A. Suda, P. Wang, and K. Midorikawa, Phys. Rev. Lett. 84, 3847 (2000).
[CrossRef] [PubMed]

T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000).
[CrossRef]

1996 (1)

M. Nisoli, S. De Silvestri, and O. Svelto, Appl. Phys. Lett. 68, 2793 (1996).
[CrossRef]

Bohman, S.

M. Nurhuda, A. Suda, S. Bohman, S. Yamaguchi, and K. Midorikawa, Phys. Rev. Lett. 97, 153902-1 (2006).
[CrossRef] [PubMed]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, 1992), Chap. 6.

Brabec, T.

T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000).
[CrossRef]

Budiono, H.

Corkum, P. B.

P. B. Corkum and F. Krausz, Nat. Phys. 3, 381 (2007).
[CrossRef]

De Silvestri, S.

M. Nisoli, S. De Silvestri, and O. Svelto, Appl. Phys. Lett. 68, 2793 (1996).
[CrossRef]

Dubietis, A.

Fibich, G.

Hatayama, M.

A. Suda, M. Hatayama, K. Nagasaka, and K. Midorikawa, Appl. Phys. Lett. 86, 111116-1 (2005).
[CrossRef]

Ilan, B.

Koprinkov, I. G.

I. G. Koprinkov, A. Suda, P. Wang, and K. Midorikawa, Phys. Rev. Lett. 84, 3847 (2000).
[CrossRef] [PubMed]

Krausz, F.

P. B. Corkum and F. Krausz, Nat. Phys. 3, 381 (2007).
[CrossRef]

T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000).
[CrossRef]

Midorikawa, K.

M. Nurhuda, A. Suda, S. Bohman, S. Yamaguchi, and K. Midorikawa, Phys. Rev. Lett. 97, 153902-1 (2006).
[CrossRef] [PubMed]

M. Nurhuda, A. Suda, K. Midorikawa, and H. Budiono, J. Opt. Soc. Am. B 22, 1757 (2005).
[CrossRef]

A. Suda, M. Hatayama, K. Nagasaka, and K. Midorikawa, Appl. Phys. Lett. 86, 111116-1 (2005).
[CrossRef]

I. G. Koprinkov, A. Suda, P. Wang, and K. Midorikawa, Phys. Rev. Lett. 84, 3847 (2000).
[CrossRef] [PubMed]

Nagasaka, K.

A. Suda, M. Hatayama, K. Nagasaka, and K. Midorikawa, Appl. Phys. Lett. 86, 111116-1 (2005).
[CrossRef]

Nisoli, M.

M. Nisoli, S. De Silvestri, and O. Svelto, Appl. Phys. Lett. 68, 2793 (1996).
[CrossRef]

Nurhuda, M.

M. Nurhuda, A. Suda, S. Bohman, S. Yamaguchi, and K. Midorikawa, Phys. Rev. Lett. 97, 153902-1 (2006).
[CrossRef] [PubMed]

M. Nurhuda, A. Suda, K. Midorikawa, and H. Budiono, J. Opt. Soc. Am. B 22, 1757 (2005).
[CrossRef]

Suda, A.

M. Nurhuda, A. Suda, S. Bohman, S. Yamaguchi, and K. Midorikawa, Phys. Rev. Lett. 97, 153902-1 (2006).
[CrossRef] [PubMed]

M. Nurhuda, A. Suda, K. Midorikawa, and H. Budiono, J. Opt. Soc. Am. B 22, 1757 (2005).
[CrossRef]

A. Suda, M. Hatayama, K. Nagasaka, and K. Midorikawa, Appl. Phys. Lett. 86, 111116-1 (2005).
[CrossRef]

I. G. Koprinkov, A. Suda, P. Wang, and K. Midorikawa, Phys. Rev. Lett. 84, 3847 (2000).
[CrossRef] [PubMed]

Svelto, O.

M. Nisoli, S. De Silvestri, and O. Svelto, Appl. Phys. Lett. 68, 2793 (1996).
[CrossRef]

Tamošauska, G.

Wang, P.

I. G. Koprinkov, A. Suda, P. Wang, and K. Midorikawa, Phys. Rev. Lett. 84, 3847 (2000).
[CrossRef] [PubMed]

Yamaguchi, S.

M. Nurhuda, A. Suda, S. Bohman, S. Yamaguchi, and K. Midorikawa, Phys. Rev. Lett. 97, 153902-1 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

M. Nisoli, S. De Silvestri, and O. Svelto, Appl. Phys. Lett. 68, 2793 (1996).
[CrossRef]

A. Suda, M. Hatayama, K. Nagasaka, and K. Midorikawa, Appl. Phys. Lett. 86, 111116-1 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Phys. (1)

P. B. Corkum and F. Krausz, Nat. Phys. 3, 381 (2007).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (2)

I. G. Koprinkov, A. Suda, P. Wang, and K. Midorikawa, Phys. Rev. Lett. 84, 3847 (2000).
[CrossRef] [PubMed]

M. Nurhuda, A. Suda, S. Bohman, S. Yamaguchi, and K. Midorikawa, Phys. Rev. Lett. 97, 153902-1 (2006).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

T. Brabec and F. Krausz, Rev. Mod. Phys. 72, 545 (2000).
[CrossRef]

Other (1)

R. W. Boyd, Nonlinear Optics (Academic, 1992), Chap. 6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of focusing geometry of a planar waveguide compression system.

Fig. 2
Fig. 2

Output beam profiles captured by a CCD camera at the end of a planar waveguide at (a) 1.3 atm without astigmatic focusing, (b) 0.3 atm , and (c) 0.7 atm with astigmatic focusing. The input pulse energies were 5 mJ in (a) and 2 mJ in both (b) and (c).

Fig. 3
Fig. 3

Spectra of ultrashort laser pulses measured after the planar waveguide at both 0 atm (black curve) and 0.3 atm (gray curve) argon gas pressures.

Fig. 4
Fig. 4

Pulse widths as a function of argon gas pressure. The black and light-gray curves show the measured pulse widths before and after compression, respectively. The dark-gray curve shows the Fourier-transform-limited (FTL) pulse width calculated from the broadened spectra. Although multiple filamentation occurred at pressures higher than 0.4 atm , the pulse width in the central beam components could be measured. The inset shows the autocorrelation trace for 0.3 atm after pulse compression. τ AC is the autocorrelation width.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E m ( y ) = A 0 sin [ ( m + 1 ) π y 2 L ] ,
β m = 2 π λ [ 1 1 2 ( m + 1 2 ) 2 ( λ 2 L ) 2 ( 1 i ν λ π L ) ] ,

Metrics