Abstract

A beam shaper suitable for sub-20fs pulses based on a prism pair and a computer-generated hologram was developed to produce vortex beams. Comparatively high throughput and the ability to tune the group-velocity dispersion make this shaper suitable for pulses from femtosecond oscillators and amplifiers and where there is a need for additional postchirp or prechirp compensation.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Allen, S. M. Barnett, and M. J. Padgett, Optical Angular Momentum (Taylor & Francis, 2003).
    [CrossRef]
  2. M. J. Padgett and L. Allen, Opt. Quantum Electron. 31, 1 (1999).
    [CrossRef]
  3. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Nature 412, 313 (2001).
    [CrossRef] [PubMed]
  4. A. Vinçotte and L. Bergé, Phys. Rev. Lett. 95, 193901 (2005).
    [CrossRef] [PubMed]
  5. K. Sueda, G. Miyaji, N. Miyanaga, and M. Nakatsuka, Opt. Express 12, 3548 (2004).
    [CrossRef] [PubMed]
  6. K. J. Moh, X.-C. Yuan, D. Y. Tang, W. C. Cheong, L. S. Zhang, D. K. Y. Low, X. Peng, H. B. Niu, and Z. Y. Lin, Appl. Phys. Lett. 88, 091103 (2006).
    [CrossRef]
  7. K. Bezuhanov, A. Dreischuh, G. G. Paulus, M. G. Schätzel, H. Walther, D. Neshev, W. Królikowski, and Y. Kivshar, J. Opt. Soc. Am. B 23, 26 (2006).
    [CrossRef]
  8. I. G. Mariyenko, J. Strohaber, and C. J. G. J. Uiterwaal, Opt. Express 13, 7599 (2005).
    [CrossRef] [PubMed]
  9. I. Zeylikovich, H. I. Sztul, V. Kartazaev, T. Le, and R. R. Alfano, Opt. Lett. 32, 2025 (2007).
    [CrossRef] [PubMed]
  10. J. Strohaber, C. Petersen, and C. J. G. J. Uiterwaal, Opt. Lett. 32, 2387 (2007).
    [CrossRef] [PubMed]
  11. O. E. Martinez, J. Opt. Soc. Am. B 3, 929 (1986).
    [CrossRef]
  12. A. Schwarz and W. Rudolph, “Femtosecond optical vortices-generation, characterization, and application,” M.S. thesis (University of New Mexico, 2008) (in preparation).
  13. H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, J. Mod. Opt. 42, 217 (1995).
    [CrossRef]
  14. N. R. Heckenberg, R. McDuff, C. P. Smith, H. Rubinsztein-Dunlop, and M. J. Wegener, Opt. Quantum Electron. 24, 951 (1992).
    [CrossRef]
  15. M. Padgett and L. Allen, Contemp. Phys. 41, 275 (2000).
    [CrossRef]

2007 (2)

2006 (2)

K. Bezuhanov, A. Dreischuh, G. G. Paulus, M. G. Schätzel, H. Walther, D. Neshev, W. Królikowski, and Y. Kivshar, J. Opt. Soc. Am. B 23, 26 (2006).
[CrossRef]

K. J. Moh, X.-C. Yuan, D. Y. Tang, W. C. Cheong, L. S. Zhang, D. K. Y. Low, X. Peng, H. B. Niu, and Z. Y. Lin, Appl. Phys. Lett. 88, 091103 (2006).
[CrossRef]

2005 (2)

2004 (1)

2001 (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Nature 412, 313 (2001).
[CrossRef] [PubMed]

2000 (1)

M. Padgett and L. Allen, Contemp. Phys. 41, 275 (2000).
[CrossRef]

1999 (1)

M. J. Padgett and L. Allen, Opt. Quantum Electron. 31, 1 (1999).
[CrossRef]

1995 (1)

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, J. Mod. Opt. 42, 217 (1995).
[CrossRef]

1992 (1)

N. R. Heckenberg, R. McDuff, C. P. Smith, H. Rubinsztein-Dunlop, and M. J. Wegener, Opt. Quantum Electron. 24, 951 (1992).
[CrossRef]

1986 (1)

Alfano, R. R.

Allen, L.

M. Padgett and L. Allen, Contemp. Phys. 41, 275 (2000).
[CrossRef]

M. J. Padgett and L. Allen, Opt. Quantum Electron. 31, 1 (1999).
[CrossRef]

L. Allen, S. M. Barnett, and M. J. Padgett, Optical Angular Momentum (Taylor & Francis, 2003).
[CrossRef]

Barnett, S. M.

L. Allen, S. M. Barnett, and M. J. Padgett, Optical Angular Momentum (Taylor & Francis, 2003).
[CrossRef]

Bergé, L.

A. Vinçotte and L. Bergé, Phys. Rev. Lett. 95, 193901 (2005).
[CrossRef] [PubMed]

Bezuhanov, K.

Cheong, W. C.

K. J. Moh, X.-C. Yuan, D. Y. Tang, W. C. Cheong, L. S. Zhang, D. K. Y. Low, X. Peng, H. B. Niu, and Z. Y. Lin, Appl. Phys. Lett. 88, 091103 (2006).
[CrossRef]

Dreischuh, A.

He, H.

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, J. Mod. Opt. 42, 217 (1995).
[CrossRef]

Heckenberg, N. R.

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, J. Mod. Opt. 42, 217 (1995).
[CrossRef]

N. R. Heckenberg, R. McDuff, C. P. Smith, H. Rubinsztein-Dunlop, and M. J. Wegener, Opt. Quantum Electron. 24, 951 (1992).
[CrossRef]

Kartazaev, V.

Kivshar, Y.

Królikowski, W.

Le, T.

Lin, Z. Y.

K. J. Moh, X.-C. Yuan, D. Y. Tang, W. C. Cheong, L. S. Zhang, D. K. Y. Low, X. Peng, H. B. Niu, and Z. Y. Lin, Appl. Phys. Lett. 88, 091103 (2006).
[CrossRef]

Low, D. K. Y.

K. J. Moh, X.-C. Yuan, D. Y. Tang, W. C. Cheong, L. S. Zhang, D. K. Y. Low, X. Peng, H. B. Niu, and Z. Y. Lin, Appl. Phys. Lett. 88, 091103 (2006).
[CrossRef]

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Nature 412, 313 (2001).
[CrossRef] [PubMed]

Mariyenko, I. G.

Martinez, O. E.

McDuff, R.

N. R. Heckenberg, R. McDuff, C. P. Smith, H. Rubinsztein-Dunlop, and M. J. Wegener, Opt. Quantum Electron. 24, 951 (1992).
[CrossRef]

Miyaji, G.

Miyanaga, N.

Moh, K. J.

K. J. Moh, X.-C. Yuan, D. Y. Tang, W. C. Cheong, L. S. Zhang, D. K. Y. Low, X. Peng, H. B. Niu, and Z. Y. Lin, Appl. Phys. Lett. 88, 091103 (2006).
[CrossRef]

Nakatsuka, M.

Neshev, D.

Niu, H. B.

K. J. Moh, X.-C. Yuan, D. Y. Tang, W. C. Cheong, L. S. Zhang, D. K. Y. Low, X. Peng, H. B. Niu, and Z. Y. Lin, Appl. Phys. Lett. 88, 091103 (2006).
[CrossRef]

Padgett, M.

M. Padgett and L. Allen, Contemp. Phys. 41, 275 (2000).
[CrossRef]

Padgett, M. J.

M. J. Padgett and L. Allen, Opt. Quantum Electron. 31, 1 (1999).
[CrossRef]

L. Allen, S. M. Barnett, and M. J. Padgett, Optical Angular Momentum (Taylor & Francis, 2003).
[CrossRef]

Paulus, G. G.

Peng, X.

K. J. Moh, X.-C. Yuan, D. Y. Tang, W. C. Cheong, L. S. Zhang, D. K. Y. Low, X. Peng, H. B. Niu, and Z. Y. Lin, Appl. Phys. Lett. 88, 091103 (2006).
[CrossRef]

Petersen, C.

Rubinsztein-Dunlop, H.

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, J. Mod. Opt. 42, 217 (1995).
[CrossRef]

N. R. Heckenberg, R. McDuff, C. P. Smith, H. Rubinsztein-Dunlop, and M. J. Wegener, Opt. Quantum Electron. 24, 951 (1992).
[CrossRef]

Rudolph, W.

A. Schwarz and W. Rudolph, “Femtosecond optical vortices-generation, characterization, and application,” M.S. thesis (University of New Mexico, 2008) (in preparation).

Schätzel, M. G.

Schwarz, A.

A. Schwarz and W. Rudolph, “Femtosecond optical vortices-generation, characterization, and application,” M.S. thesis (University of New Mexico, 2008) (in preparation).

Smith, C. P.

N. R. Heckenberg, R. McDuff, C. P. Smith, H. Rubinsztein-Dunlop, and M. J. Wegener, Opt. Quantum Electron. 24, 951 (1992).
[CrossRef]

Strohaber, J.

Sueda, K.

Sztul, H. I.

Tang, D. Y.

K. J. Moh, X.-C. Yuan, D. Y. Tang, W. C. Cheong, L. S. Zhang, D. K. Y. Low, X. Peng, H. B. Niu, and Z. Y. Lin, Appl. Phys. Lett. 88, 091103 (2006).
[CrossRef]

Uiterwaal, C. J. G. J.

Vaziri, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Nature 412, 313 (2001).
[CrossRef] [PubMed]

Vinçotte, A.

A. Vinçotte and L. Bergé, Phys. Rev. Lett. 95, 193901 (2005).
[CrossRef] [PubMed]

Walther, H.

Wegener, M. J.

N. R. Heckenberg, R. McDuff, C. P. Smith, H. Rubinsztein-Dunlop, and M. J. Wegener, Opt. Quantum Electron. 24, 951 (1992).
[CrossRef]

Weihs, G.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Nature 412, 313 (2001).
[CrossRef] [PubMed]

Yuan, X.-C.

K. J. Moh, X.-C. Yuan, D. Y. Tang, W. C. Cheong, L. S. Zhang, D. K. Y. Low, X. Peng, H. B. Niu, and Z. Y. Lin, Appl. Phys. Lett. 88, 091103 (2006).
[CrossRef]

Zeilinger, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Nature 412, 313 (2001).
[CrossRef] [PubMed]

Zeylikovich, I.

Zhang, L. S.

K. J. Moh, X.-C. Yuan, D. Y. Tang, W. C. Cheong, L. S. Zhang, D. K. Y. Low, X. Peng, H. B. Niu, and Z. Y. Lin, Appl. Phys. Lett. 88, 091103 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

K. J. Moh, X.-C. Yuan, D. Y. Tang, W. C. Cheong, L. S. Zhang, D. K. Y. Low, X. Peng, H. B. Niu, and Z. Y. Lin, Appl. Phys. Lett. 88, 091103 (2006).
[CrossRef]

Contemp. Phys. (1)

M. Padgett and L. Allen, Contemp. Phys. 41, 275 (2000).
[CrossRef]

J. Mod. Opt. (1)

H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, J. Mod. Opt. 42, 217 (1995).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nature (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, Nature 412, 313 (2001).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Opt. Quantum Electron. (2)

M. J. Padgett and L. Allen, Opt. Quantum Electron. 31, 1 (1999).
[CrossRef]

N. R. Heckenberg, R. McDuff, C. P. Smith, H. Rubinsztein-Dunlop, and M. J. Wegener, Opt. Quantum Electron. 24, 951 (1992).
[CrossRef]

Phys. Rev. Lett. (1)

A. Vinçotte and L. Bergé, Phys. Rev. Lett. 95, 193901 (2005).
[CrossRef] [PubMed]

Other (2)

L. Allen, S. M. Barnett, and M. J. Padgett, Optical Angular Momentum (Taylor & Francis, 2003).
[CrossRef]

A. Schwarz and W. Rudolph, “Femtosecond optical vortices-generation, characterization, and application,” M.S. thesis (University of New Mexico, 2008) (in preparation).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the femtosecond Laguerre beam shaper.

Fig. 2
Fig. 2

(a) Profile of a fs l = 4 beam. (b) Interference pattern produced by slightly noncollinear femtosecond LG beams of charge l = + 3 and 3 . The difference of the fringe numbers in the two half-planes equals 2 l .

Fig. 3
Fig. 3

Measured transverse distribution of the spectral components of an l = 4 fs LG beam.

Fig. 4
Fig. 4

Measured second-order autocorrelation of an l = 4 fs LG beam and second-order intensity autocorrelation obtained from Fourier filtering (dashed curve). The solid curve shows a theoretical intensity autocorrelation of a 17 fs sech 2 pulse that fits the data best. The inset shows the corresponding autocorrelations of the pulse before the shaper.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E l exp ( i k r 2 2 R r 2 w 2 ) exp ( i l θ ) ( 2 r 2 w 2 ) l 2 ,
E n ( Ω , x ) exp [ i k 2 Ω 2 i = 1 n ( β i T ) 2 z i + i k 2 D ( Δ ) ] × exp [ i k β n T Ω x ] × exp [ k 2 z 0 ( i = 1 n α i ) 2 ( x + Δ x n ) 2 ] ,
Δ x 3 = z 1 β 1 Ω α 2 + ( β 2 + α 2 β 1 ) z 2 Ω = 0 ,
β 3 T = α 3 ( β 2 + α 2 β 1 ) + β 3 = 0 ,

Metrics